Câu hỏi:

01/04/2024 48

Cho n là số nguyên dương thỏa mãn điều kiện 6Cn+1n-1=An2+160. Tìm hệ số của x7 trong khai triển 1-2x32+xn.

A. -2224.

Đáp án chính xác

B. 2224.

C. 1996.

D. -1996.

Trả lời:

verified Giải bởi Vietjack

Đáp án cần chọn là: A

Điều kiện: n2

Từ giả thiết, ta có:

6Cn+1n-1=An2+1606.(n+1)!(n-1)!.2!=n!(n-2)!+1603n(n+1)=n(n-1)+1602n2+4n-160=0n=8( vì điu kin n2)

Khi đó, ta được khai triển (1-2x3)(2+x)8=(2+x)8-2x3(2+x)8

Theo khai triển nhị thức Newton, ta có:

2+x8=k=08C8k.28-k.xk

Suy ra hệ số của x7 ứng với k+3=7 k=4

Hệ số của x7 trong khai triển x3(2+x)8 là 24.C84

Vậy hệ số cần tìm là 2.C87-2.24.C84=-2224.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho n là số nguyên dương thỏa mãn Cn0+2Cn1+22Cn2+...+2n=14348907. Hệ số có số hạng chứa x10 trong khai triển của biểu thức x2-1x3n bằng.

Xem đáp án » 01/04/2024 66

Câu 2:

Tổng các hệ số trong khai triển 3x-1n=a0+a1x+a2x2+...+anxn là 211. Tìm a6.

Xem đáp án » 01/04/2024 59

Câu 3:

Tính tổng S=1.C20181+2.C20182+3.C20183+...+2018C20182018.

Xem đáp án » 01/04/2024 51

Câu 4:

Tìm hệ số của x5 trong khai triển thành đa thức của 2-3x2n, biết n là số nguyên dương thỏa mãn: C2n+10+C2n+12+C2n+14+...+C2n+12n=1024.

Xem đáp án » 01/04/2024 48

Câu 5:

Rút gọn tổng sau: S=Cn1+2Cn2+3Cn3+...+nCnn ta được:

Xem đáp án » 01/04/2024 48

Câu 6:

Cho (1+2x)n=a0+a1x1+...+anxx. Biết a0+a12+a222+...+an2n=4096. Số lớn nhất trong các số có giá trị bằng.

Xem đáp án » 01/04/2024 46

Câu 7:

Tìm số hạng chứa x13 trong khai triển thành các đa thức của (x+x2+x3)10 là:

Xem đáp án » 01/04/2024 46

Câu 8:

Cho nN thỏa mãn Cn1+Cn2+...+Cnn=1023. Tìm hệ số x2 trong khai triển 12-nx+1n thành đa thức.

Xem đáp án » 01/04/2024 44

Câu 9:

Biết tổng các hệ số của khai triển nhị thức x+1x3n=64. Tìm số hạng không chứa x.

Xem đáp án » 01/04/2024 43

Câu 10:

Số nguyên dương n thỏa mãn

Cn0.Cn+1n+Cn1.Cn+1n-1+Cn2.Cn+1n-2+...+Cnn-1Cn+1n+Cnn.Cn+10=1716 

là:

Xem đáp án » 01/04/2024 41