Câu hỏi:
01/02/2024 63
Cho hình vẽ như bên dưới. Biết GN = 4 cm. Độ dài đoạn thẳng BN bằng:
A. 12 cm;
A. 12 cm;
B. 10 cm;
C. 14 cm;
D. 16 cm.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Xét ∆ABC có:
AM là đường trung tuyến (M là trung điểm của BC);
BN là đường trung tuyến (N là trung điểm của AC).
AM và BN cắt nhau tại G.
Do đó G là trọng tâm của ∆ABC.
Suy ra
BN = 3GN = 3 . 4 = 12 (cm)
Vậy độ dài đoạn thẳng AG bằng 12 cm.
Hướng dẫn giải
Đáp án đúng là: A
Xét ∆ABC có:
AM là đường trung tuyến (M là trung điểm của BC);
BN là đường trung tuyến (N là trung điểm của AC).
AM và BN cắt nhau tại G.
Do đó G là trọng tâm của ∆ABC.
Suy ra
BN = 3GN = 3 . 4 = 12 (cm)
Vậy độ dài đoạn thẳng AG bằng 12 cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A có hai đường trung tuyến BD và CF cắt nhau tại G. Biết BD = 9 cm. Độ dài đoạn thẳng GF bằng:
Cho tam giác ABC cân tại A có hai đường trung tuyến BD và CF cắt nhau tại G. Biết BD = 9 cm. Độ dài đoạn thẳng GF bằng:
Câu 2:
Cho tam giác ∆ABC, điểm M thuộc đoạn thẳng BC sao cho BM = 2MC. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Gọi E là giao điểm của AM và BD. Khi đó điểm M là:
Cho tam giác ∆ABC, điểm M thuộc đoạn thẳng BC sao cho BM = 2MC. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Gọi E là giao điểm của AM và BD. Khi đó điểm M là:
Câu 3:
Cho hình vẽ như bên dưới. Biết AM = 12 cm. Tính chiều dài của đoạn thẳng AG.
Cho hình vẽ như bên dưới. Biết AM = 12 cm. Tính chiều dài của đoạn thẳng AG.
Câu 4:
Cho tam giác ΔABC có đường trung tuyến AD, trên đoạn thẳng AD lấy điểm E và F sao cho AE = EF = FD. Điểm F là:
Cho tam giác ΔABC có đường trung tuyến AD, trên đoạn thẳng AD lấy điểm E và F sao cho AE = EF = FD. Điểm F là:
Câu 5:
Cho ∆ABC có hai đường trung tuyến BD và CF cắt nhau tại G. Biết BD = CF và AG cắt BC tại E. Số đo là :
Cho ∆ABC có hai đường trung tuyến BD và CF cắt nhau tại G. Biết BD = CF và AG cắt BC tại E. Số đo là :
Câu 7:
Cho tam giác ∆ABC có đường trung tuyến BD bằng đường trung tuyến CF. Khi đó tam giác ∆ABC là:
Cho tam giác ∆ABC có đường trung tuyến BD bằng đường trung tuyến CF. Khi đó tam giác ∆ABC là:
Câu 8:
Cho tam giác ∆ABC cân tại A có hai điểm E và F lần lượt là trung điểm của AC và AB. Khi đó tam giác GBC là:
Cho tam giác ∆ABC cân tại A có hai điểm E và F lần lượt là trung điểm của AC và AB. Khi đó tam giác GBC là:
Câu 9:
Cho tam giác ABC có M, N lần lượt là trung điểm của BC và AC, AM và BN cắt nhau tại G. Tỉ số bằng :
Cho tam giác ABC có M, N lần lượt là trung điểm của BC và AC, AM và BN cắt nhau tại G. Tỉ số bằng :
Câu 10:
Điền vào chỗ trống sau: “Đường trung tuyến của tam giác là đoạn thẳng nối một đỉnh của tam giác với ... của cạnh đối diện”.
Điền vào chỗ trống sau: “Đường trung tuyến của tam giác là đoạn thẳng nối một đỉnh của tam giác với ... của cạnh đối diện”.
Câu 12:
Cho tam giác ABC có M, N lần lượt là trung điểm của BC và AC, AM và BN cắt nhau tại G. Tỉ số bằng :
Cho tam giác ABC có M, N lần lượt là trung điểm của BC và AC, AM và BN cắt nhau tại G. Tỉ số bằng :
Câu 13:
Cho tam giác ABC có M, N lần lượt là trung điểm của BC và AC, AM và BN cắt nhau tại G. Tỉ số bằng:
Cho tam giác ABC có M, N lần lượt là trung điểm của BC và AC, AM và BN cắt nhau tại G. Tỉ số bằng:
Câu 14:
Điền vào chỗ trống sau: “Ba đường trung tuyến của một tam giác cắt nhau tại một điểm. Điểm đó cách mỗi đỉnh một khoảng bằng … độ dài đường trung tuyến đi qua điểm ấy.”
Điền vào chỗ trống sau: “Ba đường trung tuyến của một tam giác cắt nhau tại một điểm. Điểm đó cách mỗi đỉnh một khoảng bằng … độ dài đường trung tuyến đi qua điểm ấy.”