Câu hỏi:
01/02/2024 45Cho hình vẽ.
Kẻ tia OE là tia đối của tia OB và tia OD nằm giữa hai tia OC và OE sao cho \(\widehat {{\rm{COD}}} = \widehat {{\rm{DOE}}}.\) Chọn khẳng định sai:
A. \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) là hai góc bù nhau;
B. \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) là hai góc kề bù;
C. \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{COD}}}\) là hai góc đối đỉnh;
D. \(\widehat {{\rm{BOA}}}\) và \(\widehat {{\rm{EOD}}}\) là hai góc đối đỉnh.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Theo bài ta có: CO ⊥ OB mà OE là tia đối của OB.
Do đó CO ⊥ EB
Suy ra \(\widehat {{\rm{COE}}} = 90^\circ \)
Theo bài \(\widehat {{\rm{COD}}} = \widehat {{\rm{DOE}}}\) và \(\widehat {{\rm{COD}}} + \widehat {{\rm{DOE}}} = \widehat {{\rm{COE}}}\) (hai góc kề nhau)
Suy ra \(\widehat {{\rm{COD}}} = \widehat {{\rm{DOE}}} = \frac{{90^\circ }}{2} = 45^\circ .\)
Ta có \(\widehat {{\rm{AOB}}} + \left( {\widehat {{\rm{BOC}}} + \widehat {{\rm{COD}}}} \right) = 45^\circ + 90^\circ + 45^\circ = 180^\circ .\)
Hay \(\widehat {{\rm{AOB}}} + \widehat {{\rm{BOD}}} = 180^\circ \)
Suy ra \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) là hai góc bù nhau (vì hai góc bù nhau có tổng số đo bằng 180°) nên A đúng.
• Ta lại có \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) có chung cạnh OB và không có điểm trong chung nên hai góc \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) là hai góc kề nhau.
Vì hai góc \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) vừa kề nhau và vừa bù nhau nên \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) là hai góc kề bù. Do đó B đúng.
• Ta có \(\widehat {{\rm{AOB}}} + \widehat {{\rm{BOD}}} = 180^\circ \)(chứng minh trên)
Hay \(\widehat {{\rm{AOD}}} = 180^\circ \) suy ra OA và OD là hai tia đối nhau.
Mà OB và OE là hai tia đối nhau (giả thiết).
Do đó hai góc \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{EOD}}}\) là hai góc đối đỉnh nên D đúng.
• Ta có \(\widehat {{\rm{AOB}}} = \widehat {{\rm{COD}}} = 45^\circ \);
OA và OD là hai tia đối nhau nhưng OB và OC không phải là hai tia đối nhau.
Do đó \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{COD}}}\) không là hai góc đối đỉnh nên C sai.
Vậy ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Theo bài ta có: CO ⊥ OB mà OE là tia đối của OB.
Do đó CO ⊥ EB
Suy ra \(\widehat {{\rm{COE}}} = 90^\circ \)
Theo bài \(\widehat {{\rm{COD}}} = \widehat {{\rm{DOE}}}\) và \(\widehat {{\rm{COD}}} + \widehat {{\rm{DOE}}} = \widehat {{\rm{COE}}}\) (hai góc kề nhau)
Suy ra \(\widehat {{\rm{COD}}} = \widehat {{\rm{DOE}}} = \frac{{90^\circ }}{2} = 45^\circ .\)
Ta có \(\widehat {{\rm{AOB}}} + \left( {\widehat {{\rm{BOC}}} + \widehat {{\rm{COD}}}} \right) = 45^\circ + 90^\circ + 45^\circ = 180^\circ .\)
Hay \(\widehat {{\rm{AOB}}} + \widehat {{\rm{BOD}}} = 180^\circ \)
Suy ra \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) là hai góc bù nhau (vì hai góc bù nhau có tổng số đo bằng 180°) nên A đúng.
• Ta lại có \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) có chung cạnh OB và không có điểm trong chung nên hai góc \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) là hai góc kề nhau.
Vì hai góc \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) vừa kề nhau và vừa bù nhau nên \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{BOD}}}\) là hai góc kề bù. Do đó B đúng.
• Ta có \(\widehat {{\rm{AOB}}} + \widehat {{\rm{BOD}}} = 180^\circ \)(chứng minh trên)
Hay \(\widehat {{\rm{AOD}}} = 180^\circ \) suy ra OA và OD là hai tia đối nhau.
Mà OB và OE là hai tia đối nhau (giả thiết).
Do đó hai góc \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{EOD}}}\) là hai góc đối đỉnh nên D đúng.
• Ta có \(\widehat {{\rm{AOB}}} = \widehat {{\rm{COD}}} = 45^\circ \);
OA và OD là hai tia đối nhau nhưng OB và OC không phải là hai tia đối nhau.
Do đó \(\widehat {{\rm{AOB}}}\) và \(\widehat {{\rm{COD}}}\) không là hai góc đối đỉnh nên C sai.
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vẽ, biết rằng OC là tia phân giác của \(\widehat {{\rm{BOD}}}\) và \(\widehat {{\rm{BOD}}} = 4\widehat {{\rm{AOB}}}\).
Số đo của \(\widehat {{\rm{COD}}}\) là
Câu 3:
Cho hình vẽ
Biết rằng MN // BC. Số đó của \(\widehat {{\rm{ABC}}}\) là:
Câu 4:
Cho hình vẽ, biết rằng Oz, Ot lần lượt là tia phân giác của \(\widehat {{\rm{yOu}}}\)và \(\widehat {{\rm{zOu}}}\) và \(\widehat {tOu} = a^\circ .\)
Chọn khẳng định đúng: