Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh: AC^2 + BD^2 = 4(OA^2 + OB^2) = 4AB^2.

Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:AC2 + BD2 = 4(OA2 + OB2) = 4AB2.

Trả lời
Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh: AC^2 + BD^2 = 4(OA^2 + OB^2) = 4AB^2. (ảnh 1)

Do ABCD là hình thoi nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm O của mỗi đường.

Do đó AC = 2OA, BD = 2OB.

Ta có: AC2 + BD2 = (2OA)2 + (2OB)2 = 4OA2 + 4OB2 = 4(OA2 + OB2).

Xét ΔOAB vuông tại O, theo định lí Pythagore ta có:

AB2 = OA2 + OB2

Suy ra AC2 + BD2 = 4(OA2 + OB2) = 4AB2.

Câu hỏi cùng chủ đề

Xem tất cả