Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông

Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông góc với BD tại D, hai đường thẳng này cắt nhau tại E. Chứng minh rằng nếu EC = ED thì hình thang ABCD là hình thang cân.

Trả lời

Gọi O là giao điểm của AC và BD.

Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông (ảnh 1)

Xét ∆DOE và ∆COE có:

ODE^=OCE^=90° (vì OD DE; OC CE)

EC = ED (giả thiết)

Cạnh OE chung

Do đó ∆DOE = ∆COE (cạnh huyền – cạnh góc vuông).

Suy ra OC = OD (hai cạnh tương ứng).

Do đó tam giác OCD cân tại O nên C^1=D^1.

Vì ABCD là hình thang nên AB // CD suy ra A^1=C^1;  B^1=D^1 (cặp góc so le trong).

Do đó A^1=  B^1 (vì C^1=D^1).

Suy ra tam giác OAB cân tại O nên OA = OB.

Xét ∆OAD và ∆OBC có:

OA = OB (chứng minh trên)

AOD^=BOC^ (hai góc đối đỉnh)

OC = OD (chứng minh trên)

Do đó ∆OAD = ∆OBC (c.g.c)

Suy ra C^2=D^2 (hai góc tương ứng).

Ta có ADC^=D^1+D^2;  BCD^=C^1+C^2.

C^1=D^1 ;C^2=D^2 nên ADC^=BCD^.

Hình thang ABCD có ADC^=BCD^ nên ABCD là hình thang cân.

Câu hỏi cùng chủ đề

Xem tất cả