Cho hình lăng trụ tam giác ABC.A’B’C’. Lấy M, M’ lần lượt là trung điểm các đoạn thẳng BC, B’C’; lấy các điểm G, G’, K lần lượt thuộc các đoạn AM, A’M’, A’B sao cho AG/AM = A'G'/A'M' = A'K/A'

Cho hình lăng trụ tam giác ABC.A’B’C’. Lấy M, M’ lần lượt là trung điểm các đoạn thẳng BC, B’C’; lấy các điểm G, G’, K lần lượt thuộc các đoạn AM, A’M’, A’B sao cho \(\frac{{AG}}{{AM}} = \frac{{A'G'}}{{A'M'}} = \frac{{A'K}}{{A'B}} = \frac{2}{3}\).

a) Chứng minh rằng C’M // (A’BM’).

b) Chứng minh rằng G’K // (BCC’B’).

c) Chứng minh rằng (GG’K) // (BCC’B’).

d) Gọi (α) là mặt phẳng đi qua K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt cạnh CC’ tại điểm I. Tính \(\frac{{IC}}{{IC'}}\).

Trả lời

Lời giải

a)

Media VietJack

Trong mp(BCC’B’) có tứ giác BCC’B’ là hình bình hành nên BC // B’C’ và BC = B’C’.

Lại có M, N lần lượt là trung điểm của BC, B’C’ nên BM = C’M’ = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)B’C’.

Tứ giác BMC’M’ có BM // C’M’ (do BC // B’C’) và BM = C’M’ nên BMC’M’ là hình bình hành

Do đó C’M // M’B, mà M’B (A’BM’) nên C’M // (A’BM’).

b)

Media VietJack

Trong mp(A’BM’), xét DA’BM’ có \(\frac{{A'G'}}{{A'M'}} = \frac{{A'K}}{{A'B}} = \frac{2}{3}\) nên G’K // M’B (theo định lí Thalès đảo)

Mà M’B (BCC’B’) nên G’K // (BCC’B’).

c)

Media VietJack

Trong mp(BCC’B’), tứ giác CMM’C’ có C’M’ // CM và C’M’ = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)B’C’

Do đó tứ giác CMM’C’ là hình bình hành nên M’M // C’C và M’M = C’C.

 Mà A’A // C’C và A’A = C’C nên A’A // M’M và A’A = M’M.

Khi đó AMM’A’ là hình bình hành nên A’M’ // AM và A’M’ = AM.

Lại có \(\frac{{AG}}{{AM}} = \frac{{A'G'}}{{A'M'}} = \frac{2}{3}\) nên A’G’ = AG, do đó G’M’ = GM.

Xét tứ giác GMM’G’ có: G’M’ = GM (do A’M’ // AM) và G’M’ = GM.

Do đó GMM’G’ là hình bình hành nên G’G // M’M

Lại có M’M (BCC’B’) nên G’G // (BCC’B’).

Ta có: G’K // (BCC’B’);

           G’G // (BCC’B’);

           G’K, G’G cắt nhau tại điểm G’ và cùng nằm trong (GG’K)

Do đó (GG’K) // ((BCC’B’).

d)

Media VietJack

Trong mp(ABB’A’), vẽ đường thẳng qua K và song song với AB, A’B’; cắt A’A và B’B lần lượt tại J và H.

Trong mp (ACC’A”), vẽ đường thẳng qua J và song song với AC, A’C’; cắt C’C tại I.

Ta có: IJ // AC mà AC (ABC) nên IJ // (ABC);

           JK // AB mà AB (ABC) nên JK // (ABC).

Lại có IJ và JK cắt nhau tại J và cùng nằm trong mp(IJK) nên (IJK) // (ABC).

Theo bài, mp(α) // (ABC) và đi qua K nên mp(α) chính là mp(IJK).

Khi đó CC’ cắt (α) tại I.

Ta có: (IJK) // (ABC) mà (ABC) // (A’B’C’) nên (A’B’C’), (IJK), (ABC) là ba mặt phẳng song song với nhau.

Xét hai cát tuyến C’C và A’B bất kì cắt ba mặt phẳng song song (A’B’C’), (IJK), (ABC) lần lượt tại các điểm C’, I, C và A’, K, B. Khi đó theo định lí Thalès trong không gian ta có: \(\frac{{C'I}}{{A'K}} = \frac{{IC}}{{KB}}\)

Suy ra \[\frac{{KB}}{{A'K}} = \frac{{IC}}{{C'I}}\]

Theo bài, \(\frac{{A'K}}{{A'B}} = \frac{2}{3}\) nên \(\frac{{A'B}}{{A'K}} = \frac{3}{2}\) do đó \(\frac{{A'B - A'K}}{{A'K}} = \frac{{3 - 2}}{2}\) hay \(\frac{{KB}}{{A'K}} = \frac{1}{2}\)

Vậy \[\frac{{IC}}{{IC'}} = \frac{{KB}}{{A'K}} = \frac{1}{2}\].

Câu hỏi cùng chủ đề

Xem tất cả