Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD) và AB = 2CD. Gọi M, N lần lượt là trung điểm các cạnh SA, SB. Chứng minh rằng: a) MN // (SCD); b) DM // (SBC); c) Lấy điểm I thuộc

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD) và AB = 2CD. Gọi M, N lần lượt là trung điểm các cạnh SA, SB. Chứng minh rằng:

a) MN // (SCD);

b) DM // (SBC);

c) Lấy điểm I thuộc cạnh SD sao cho \(\frac{{SI}}{{SD}} = \frac{2}{3}\). Chứng minh rằng: SB // (AIC).

Trả lời

Lời giải

a)

Media VietJack

Trong mp(SAB), xét DSAB có M, N lần lượt là trung điểm của SA, SB nên MN là đường trung bình của tam giác

Do đó MN // AB.

Mà AB // CD (giả thiết) nên MN // CD.

Lại có CD (SCD) nên MN // (SCD).

b)

Media VietJack

Theo câu a, MN là đường trung bình của DSAB nên MN = \(\frac{1}{2}\)AB

Mà AB = 2CD hay CD = \(\frac{1}{2}\)AB

Do đó MN = CD.

Xét tứ giác MNCD có: MN // CD và MN = CD nên MNCD là hình bình hành

Suy ra DM // CN

Mà CN (SBC) nên DM // (SBC).

c)

Media VietJack

• Trong mp(ABCD), gọi O là giao điểm của AC và BD.

Do AB // CD, theo hệ quả định lí Thalès ta có: \(\frac{{OB}}{{DO}} = \frac{{AB}}{{CD}} = \frac{2}{1}\)

Suy ra \(\frac{{OB}}{{DO + OB}} = \frac{2}{{1 + 2}}\) hay \(OB\)\(\frac{{OB}}{{DB}} = \frac{2}{3}\)

• Trong mp(SDB), xét DSDB có \(\frac{{SI}}{{SD}} = \frac{{OB}}{{DB}} = \frac{2}{3}\) nên IO // SB (theo định lí Thalès đảo)

Mà IO (AIC) nên SB // (AIC).

Câu hỏi cùng chủ đề

Xem tất cả