Cho hình hộp ABCD.A'B'C'D'. Một mặt phẳng (P) cắt các cạnh AD, BC, B'C', A'D' lần lượt tại E, F, G, H. Chứng minh rằng tứ giác EFGH là hình bình hành.

Cho hình hộp ABCD.A'B'C'D'. Một mặt phẳng (P) cắt các cạnh AD, BC, B'C', A'D' lần lượt tại E, F, G, H. Chứng minh rằng tứ giác EFGH là hình bình hành.

Trả lời
Cho hình hộp ABCD.A'B'C'D'. Một mặt phẳng (P) cắt các cạnh AD, BC, B'C', A'D' lần lượt tại E, F, G, H. Chứng minh rằng tứ giác EFGH là hình bình hành. (ảnh 1)

Ta có (ABCD) ∩ (EFGH) = EF; (A'B'C'D') ∩ (EFGH) = HG.

Vì hai mặt (ABCD) và (A'B'C'D) của hình hộp song song với nhau nên giao tuyến của mặt phẳng (EFGH) và hai mặt phẳng đó song song với nhau, tức là EF // HG.

Tương tự có EH // FG nên tứ giác EFGH là hình bình hành.

Câu hỏi cùng chủ đề

Xem tất cả