Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và O là giao điểm của AC và BD. Gọi M, N, P lần lượt là ba điểm nằm trên các cạnh AB, BC, SO. Xác định giao tuyến của mặt phẳng (MNP) với cá

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và O là giao điểm của ACBD. Gọi M, N, P lần lượt là ba điểm nằm trên các cạnh AB, BC, SO. Xác định giao tuyến của mặt phẳng (MNP) với các mặt của hình chóp S.ABCD (nếu có).

Trả lời
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và O là giao điểm của AC và BD. Gọi M, N, P lần lượt là ba điểm nằm trên các cạnh AB, BC, SO. Xác định giao tuyến của mặt phẳng (MNP) với các mặt của hình chóp S.ABCD (nếu có). (ảnh 1)

• Do M AB, N BCAB (ABCD), BC (ABCD) nên MN (ABCD)

Mà MN (MNP)

Suy ra (MNP) ∩ (ABCD) = MN.

Trong mặt phẳng (ABCD), gọi H là giao điểm của MN và DC; K là giao điểm của MN và AD; I là giao điểm của NO và AD.

Trong mặt phẳng (SIO), gọi G là giao điểm của NP và SI.

Trong mặt phẳng (SAD), gọi T là giao điểm của KG và SAR là giao điểm của KG và SD.

Trong mặt phẳng (SDC), gọi Q là giao điểm của RH và SC.

Khi đó, (MNP) ∩ (SAB) = TM.

             (MNP) ∩ (SBC) = NQ;

             (MNP) ∩ (SDC) = QR;

             (MNP) ∩ (SAD) = RT.

Câu hỏi cùng chủ đề

Xem tất cả