Cho hàm số y = f(x) = – 2x^2. Tính f(1); f(2) và tìm tập xác định
c) Cho hàm số y = f(x) = – 2x2. Tính f(1); f(2) và tìm tập xác định, tập giá trị của hàm số này.
c) Cho hàm số y = f(x) = – 2x2. Tính f(1); f(2) và tìm tập xác định, tập giá trị của hàm số này.
c) Ta có y = f(x) = – 2x2.
Do đó f(1) = – 2 . 12 = – 2; f(2) = – 2 . 22 = – 8.
Hàm số y = f(x) = – 2x2 xác định với mọi x ∈ ℝ.
Vậy tập xác định của hàm số trên là D = ℝ.
Vì x2 ≥ 0 với mọi x ∈ ℝ, suy ra 2x2 ≥ 0 với mọi x ∈ ℝ.
Nên y = – 2x2 ≤ 0 với mọi x ∈ ℝ.
Vậy tập giá trị của hàm số trên là T = (– ∞; 0].