Câu hỏi:
31/01/2024 73
Cho hai đa thức f(x) = 6x2 + 4x – 5 và g(x) = –6x2 – 4x + 2.
Tính h(x) = f(x) + g(x) và tìm bậc của h(x).
Cho hai đa thức f(x) = 6x2 + 4x – 5 và g(x) = –6x2 – 4x + 2.
Tính h(x) = f(x) + g(x) và tìm bậc của h(x).
A. h(x) = 12x2 + 8x – 7 và bậc của h(x) là 2;
A. h(x) = 12x2 + 8x – 7 và bậc của h(x) là 2;
B. h(x) = –3 và bậc của h(x) là 1;
C. h(x) = 8x – 3 và bậc của h(x) là 1;
D. h(x) = –3 và bậc của h(x) là 0.
Trả lời:
Đáp án đúng là: D
Ta có: h(x) = f(x) + g(x)
= (6x2 + 4x – 5) + (–6x2 – 4x + 2)
= 6x2 + 4x – 5 – 6x2 – 4x + 2
= (6x2 – 6x2) + (4x – 4x) + (–5 + 2)
= –3
Vậy h(x) = –3 và bậc của h(x) là 0.
Đáp án đúng là: D
Ta có: h(x) = f(x) + g(x)
= (6x2 + 4x – 5) + (–6x2 – 4x + 2)
= 6x2 + 4x – 5 – 6x2 – 4x + 2
= (6x2 – 6x2) + (4x – 4x) + (–5 + 2)
= –3
Vậy h(x) = –3 và bậc của h(x) là 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho f(x) = 3x5 – 3x4 + x2 – 5 và g(x) = 2x4 – x3 – x2 + 5.
Tính hiệu f(x) – g(x) rồi sắp xếp kết quả theo lũy thừa tăng dần của biến ta được:
Cho f(x) = 3x5 – 3x4 + x2 – 5 và g(x) = 2x4 – x3 – x2 + 5.
Tính hiệu f(x) – g(x) rồi sắp xếp kết quả theo lũy thừa tăng dần của biến ta được:
Câu 3:
Cho f(x) = 2x4 – 4x2 + 6x3 + 2x + 3; g(x) = x + 3 và f(x) + k(x) = g(x). Hệ số tự do của đa thức k(x) là:
Cho f(x) = 2x4 – 4x2 + 6x3 + 2x + 3; g(x) = x + 3 và f(x) + k(x) = g(x). Hệ số tự do của đa thức k(x) là:
Câu 4:
Người ta rót nước từ một can đựng 20 lít nước sang một bể rỗng có dạng hình lập phương với cạnh 40 cm. Khi mực nước trong bể cao h (cm) thì thể tích nước trong can còn lại là bao nhiêu? Biết rằng 1 lít = 1 dm3.
Người ta rót nước từ một can đựng 20 lít nước sang một bể rỗng có dạng hình lập phương với cạnh 40 cm. Khi mực nước trong bể cao h (cm) thì thể tích nước trong can còn lại là bao nhiêu? Biết rằng 1 lít = 1 dm3.
Câu 5:
Bạn Minh nói: Tổng của hai đa thức bậc ba luôn là đa thức bậc ba.
Bạn Quân nói: Hiệu của hai đa thức bậc ba luôn là đa thức bậc ba.
Bạn Nam nói: Tổng của hai đa thức bậc ba chưa chắc là đa thức bậc ba.
Chọn khẳng định đúng.
Bạn Minh nói: Tổng của hai đa thức bậc ba luôn là đa thức bậc ba.
Bạn Quân nói: Hiệu của hai đa thức bậc ba luôn là đa thức bậc ba.
Bạn Nam nói: Tổng của hai đa thức bậc ba chưa chắc là đa thức bậc ba.
Chọn khẳng định đúng.
Câu 6:
Cho tam giác như hình vẽ dưới đây, có chu vi bằng 6x – 10.
Độ dài cạnh chưa biết của tam giác trên là:
Cho tam giác như hình vẽ dưới đây, có chu vi bằng 6x – 10.
Độ dài cạnh chưa biết của tam giác trên là:
Câu 7:
Cho đa thức P(x) = –6x5 – 4x4 + 3x2 – 2x và Q(x) = 2x5 – 4x4 – 2x3 + 2x2 – x – 3. Tính M(1) với M(x) = P(x) – Q(x).
Câu 8:
A(x) = 5x4 + 4x3 + 2x + 1 và B(x) = –5x4 + x3 + 3x2 + x – 1. Bậc của đa thức N(x) = A(x) + B(x) là:
A(x) = 5x4 + 4x3 + 2x + 1 và B(x) = –5x4 + x3 + 3x2 + x – 1. Bậc của đa thức N(x) = A(x) + B(x) là:
Câu 9:
Cho P(x) = 3x4 + 4x3 – 3x2 + 2x – 1 và Q(x) = –x4 + 2x3 – 3x2 + 4x – 5.
Tính P(x) + Q(x) rồi tìm bậc của đa thức thu gọn.
Cho P(x) = 3x4 + 4x3 – 3x2 + 2x – 1 và Q(x) = –x4 + 2x3 – 3x2 + 4x – 5.
Tính P(x) + Q(x) rồi tìm bậc của đa thức thu gọn.
Câu 10:
Cho hai đa thức P(x) và Q(x) dưới đây, hai đa thức nào thỏa mãn P(x) – Q(x) = 2x – 2 là:
Cho hai đa thức P(x) và Q(x) dưới đây, hai đa thức nào thỏa mãn P(x) – Q(x) = 2x – 2 là:
Câu 11:
Cho hai đa thức f(x) = x2 + 3x – 5 và g(x) = –5x2 – x + 2.
Tính k(x) = f(x) –g(x) và tìm bậc của k(x).
Cho hai đa thức f(x) = x2 + 3x – 5 và g(x) = –5x2 – x + 2.
Tính k(x) = f(x) –g(x) và tìm bậc của k(x).
Câu 12:
Một mảnh đất hình chữ nhật có kích thước chiều dài, chiều rộng lần lượt là 3x m và 2 m. Người ta dự định trồng hoa trong phần đất hình vuông có cạnh là x m như hình vẽ.
Diện tích phần đất còn lại (phần đất không tô màu) là:
Một mảnh đất hình chữ nhật có kích thước chiều dài, chiều rộng lần lượt là 3x m và 2 m. Người ta dự định trồng hoa trong phần đất hình vuông có cạnh là x m như hình vẽ.
Diện tích phần đất còn lại (phần đất không tô màu) là:
Câu 13:
Tìm hệ số cao nhất của đa thức k(x) biết f(x) + k(x) = g(x) và f(x) = 5x4 – 4x2 + 6x3 + x – 1; g(x) = 3 – 2x.
Tìm hệ số cao nhất của đa thức k(x) biết f(x) + k(x) = g(x) và f(x) = 5x4 – 4x2 + 6x3 + x – 1; g(x) = 3 – 2x.