Câu hỏi:

30/01/2024 67

Cho xOy^ khác góc bẹt, từ một điểm M trên tia phân giác của xOy^. Từ M kẻ MA vuông góc với Ox và MB vuông góc với Oy. Phát biểu nào dưới đây là sai?


A. M cách đều hai cạnh của góc xOy^;         



B. ∆OAB đều;                


Đáp án chính xác

C. OM là đường trung trực của đoạn thẳng AB;               

D. ∆MAB cân tại M.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Cho góc xOy  khác góc bẹt, từ một điểm M trên tia phân giác của góc xOy  (ảnh 1)

Xét ∆OAM và ∆OBM, có;

OM là cạnh chung.

AOM^=BOM^ (OM là tia phân giác của xOy^)

OAM^=OBM^=90°.

Do đó ∆OAM = ∆OBM (cạnh huyền – góc nhọn)

Suy ra OA = OB và MA = MB (các cặp cạnh tương ứng).

Do đó tam giác OAB cân tại O, tam giác MAB cân tại M và khoảng cách từ M đến hai cạnh của xOy^ là bằng nhau. Vì vậy A và D đúng và B sai.

Khi đó OM là đường trung trực của đoạn thẳng AB. Do đó C đúng.

Vậy chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC vuông tại A, AB < AC. Tia phân giác của B^ cắt AC tại E. Từ E kẻ ED vuông góc với BC tại D. Kết luận nào sau đây đúng nhất?

Xem đáp án » 30/01/2024 101

Câu 2:

Cho ∆ABC có B^=2C^. Kẻ đường phân giác BD, từ D kẻ DE //BC (E AB). Số tam giác cân là:

Xem đáp án » 30/01/2024 99

Câu 3:

Cho ∆ABC vuông tại A có hai đường trung trực của hai cạnh AB và AC cắt nhau tại D. Vị trí của điểm D là:

Xem đáp án » 30/01/2024 94

Câu 4:

Cho ∆ABC cân tại A. Lấy điểm D AC, E AB sao cho AD = AE. Gọi I là giao điểm của BD và CE. Kết luận nào sau đây đúng nhất?

Xem đáp án » 30/01/2024 88

Câu 5:

Cho ∆ABC đều. Lấy các điểm D, E, F lần lượt trên các cạnh AB, BC, CA sao cho AD = BE = CF. Khi đó ∆DEF là:

Xem đáp án » 30/01/2024 62

Câu 6:

Cho đoạn thẳng CD. Gọi A là trung điểm của CD. Kẻ một đường thẳng vuông góc với CD tại A. Trên đường thẳng đó, lấy điểm B sao cho BCD^=60°. Khi đó ∆BCD là tam giác gì?

Xem đáp án » 30/01/2024 52

Câu hỏi mới nhất

Xem thêm »
Xem thêm »