Câu hỏi:
30/01/2024 46
Cho f(x) = x2 + 2x + a; g(x) = 2x + 3. Tìm a để x = 1 là nghiệm của h(x) = f(x).g(x) + 2x – 5:
Cho f(x) = x2 + 2x + a; g(x) = 2x + 3. Tìm a để x = 1 là nghiệm của h(x) = f(x).g(x) + 2x – 5:
A. a = 3;
B. a = −3;
C. a = 1;
D. a = 0.
Trả lời:
Đáp án đúng là: C
h(x) = f(x).g(x) + 2x – 5
= (x2 + 2x + a)(2x + 3) + 2x – 5
= 2x3 + 4x2 + 2ax + 3x2 + 6x + 3a + 2x – 5
= 2x3 + 7x2 + (2a + 8)x + 3a – 5
Khi đó h(1) = 2 + 7 + 2a + 8 + 3a – 5 = 5a + 10 = 0
Hay a = −10 : 5 = −2.
Vậy với a = −2 thì thỏa mãn yêu cầu bài toán.
Đáp án đúng là: C
h(x) = f(x).g(x) + 2x – 5
= (x2 + 2x + a)(2x + 3) + 2x – 5
= 2x3 + 4x2 + 2ax + 3x2 + 6x + 3a + 2x – 5
= 2x3 + 7x2 + (2a + 8)x + 3a – 5
Khi đó h(1) = 2 + 7 + 2a + 8 + 3a – 5 = 5a + 10 = 0
Hay a = −10 : 5 = −2.
Vậy với a = −2 thì thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta dùng những chiếc cọc để rào một mảnh vườn hình chữ nhật sao cho mỗi góc vườn đều có một chiếc cọc và hai cọc liên tiếp cắm cách nhau 0,2 m. Biết rằng số cọc dùng để rào hết chiều dài của vườn nhiều hơn số cọc dùng để rào hết chiều rộng là 30 chiếc. Gọi số cọc dùng để rào hết chiều rộng là a. Tìm đa thức biểu thị diện tích của mảnh vườn.
Người ta dùng những chiếc cọc để rào một mảnh vườn hình chữ nhật sao cho mỗi góc vườn đều có một chiếc cọc và hai cọc liên tiếp cắm cách nhau 0,2 m. Biết rằng số cọc dùng để rào hết chiều dài của vườn nhiều hơn số cọc dùng để rào hết chiều rộng là 30 chiếc. Gọi số cọc dùng để rào hết chiều rộng là a. Tìm đa thức biểu thị diện tích của mảnh vườn.
Câu 2:
Kết luận về hai đa thức f(x) = (x – 5)(2x + 3) – 2x(x – 3) + x + 7 và
g(x) = (x2 – 5x + 7)(x – 2) – (x2 – 3x)(x – 4) – 5(x – 2) là đúng:
Kết luận về hai đa thức f(x) = (x – 5)(2x + 3) – 2x(x – 3) + x + 7 và
g(x) = (x2 – 5x + 7)(x – 2) – (x2 – 3x)(x – 4) – 5(x – 2) là đúng: