Câu hỏi:
01/04/2024 42Cho dãy số (un) thỏa mãn ln2u6 – ln = ln u4 – 1 và un+1 = un.e với mọi n ≥ 1 Tìm u1
A. e
B. e2
C. e-3
D. e-4
Trả lời:
Chọn D.
Vì un+1 = un.e nên dễ thấy dãy số (un) là cấp số nhân có công bội q = e
Từ giả thiết suy ra:
ln2u6 – (ln u8 +ln u4) + 1 = 0 ⇔ ln2u6 – (ln u8u4) + 1 = 0
( vì đây là cấp số nhân nên:
⇔ (ln u6 – 1)2 = 0
⇔ ln u6 = 1 ⇔ u6 = e ⇔ nên u1 = e-4
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho dãy số thỏa mãn u1 = 5; un+1 = 3un+ 4/3. Giá trị nhỏ nhất của n để u1 + u2 + … + un > 5100 - 2/3n là
Câu 2:
Cho cấp số nhân (un) có u1 = 2; u1 – 12u2 – 6u3 đạt giá trị lớn nhất. Tìm công bội q?
Câu 3:
Một tam giác vuông có chu vi bằng 3a, và 3 cạnh lập thành một cấp số cộng. Tính độ dài cạnh lớn nhất của tam giác theo a.
Câu 4:
Cho các số x + 2; x + 14; x + 50 theo thứ tự lập thành một cấp số nhân. Khi đó x2 + 2013 bằng:
Câu 5:
Biết rằng tồn tại hai giá trị của tham số m để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: x4 – 10x2 + 2m2 + 7m = 0, tính tổng lập phương của hai giá trị đó.
Câu 6:
Cho cấp số cộng (un) có công sai d = -3 và u22 + u32 + u42 đạt giá trị nhỏ nhất. Tính tổng S100 của số hạng đầu tiên của cấp số cộng đó.
Câu 8:
Ta biết rằng trong một hồ sen; số lá sen ngày hôm sau bằng 3 lần số lá sen ngày hôm trước. Biết rằng ngày đầu có 1 lá sen thì tới ngày thứ 10 hồ sẽ đầy lá sen. Hỏi nếu ngày đầu có 9 lá sen thì tới ngày thứ mấy hồ sẽ đầy lá sen?
Câu 9:
Tính tổng tất cả các số hạng của một cấp số nhân , biết số hạng đầu bằng 18, số hạng thứ hai bằng 54 và số hạng cuối bằng 39366.
Câu 11:
Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: x3 – 7mx2 + 2(m2 + 6m)x – 64 = 0.
Câu 14:
Cho cấp số nhân (un) có u1 = 3; 15u1 – 4u2 + u3 đạt giá trị nhỏ nhất. Tìm số hạng thứ 13 của cấp số nhân đã cho.
Câu 15:
Cho dãy số (un) thỏa mãn và un+1 = 10un, ∀ n ∈ R* Khi đó u2018bằng