Cho đa thức P = 5x^2y – 2xy^2 + xy – x + y – 2. a) Tìm đa thức Q, biết rằng P + Q = (x + y)(2xy + 2y^2 – 1).
Cho đa thức P = 5x2y – 2xy2 + xy – x + y – 2.
a) Tìm đa thức Q, biết rằng P + Q = (x + y)(2xy + 2y2 – 1).
Cho đa thức P = 5x2y – 2xy2 + xy – x + y – 2.
a) Tìm đa thức Q, biết rằng P + Q = (x + y)(2xy + 2y2 – 1).
Ta có:
P + Q = (x + y)(2xy + 2y2 – 1)
= x.2xy + x.2y2 + x.(‒1) + y.2xy + y.2y2 + y.(‒1)
= 2x2y + 2xy2 ‒ x + 2xy2 + 2y3 ‒ y
= 2x2y + (2xy2 + 2xy2) ‒ x + 2y3 ‒ y
= 2x2y + 4xy2 ‒ x + 2y3 ‒ y
Do đó P + Q = 2x2y + 4xy2 ‒ x + 2y3 ‒ y
Suy ra Q = 2x2y + 4xy2 ‒ x + 2y3 ‒ y ‒ P
= 2x2y + 4xy2 ‒ x + 2y3 ‒ y ‒ (5x2y – 2xy2 + xy – x + y – 2)
= 2x2y + 4xy2 ‒ x + 2y3 ‒ y ‒ 5x2y + 2xy2 ‒ xy + x ‒ y + 2)
= (2x2y ‒ 5x2y) + (4xy2 + 2xy2) + (‒x + x) + 2y3 ‒ xy + (‒ y ‒ y) + 2
= ‒3x2y + 6xy2 + 2y3 ‒ xy ‒ 2y + 2.