Câu hỏi:

25/01/2024 138

Cho ∆ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G.

a) Chứng minh ∆ADB và ∆AEC.

b) Chứng minh DGBC là tam giác cân.

c) Chứng minh \(GD + GE > \frac{1}{2}BC\).

Trả lời:

verified Giải bởi Vietjack

Giải:

Media VietJack

a) D là trung điểm AC nên AD = \(\frac{1}{2}\)AC

E là trung điểm AB nên AE = \(\frac{1}{2}\)AB.

∆ABC cân tại A nên AB = AC.

Suy ra AE = AD.

Xét ∆ADB và ∆AEC, có:

AB = AC (chứng minh trên);

\(\widehat {BAC}\) là góc chung;

AE = AD (chứng minh trên).

Do đó ∆ADB = ∆AEC (c.g.c).

b) G là trọng tâm của ∆ABC nên \(BG = \frac{2}{3}BD\) và \(CG = \frac{2}{3}CE\).

Mà BD = CE (do ∆ADB = ∆AEC)

Nên BG = CG

Do đó ∆GBC cân tại G.

c) G là trọng tâm tam giác ABC nên \(GD = \frac{1}{2}GB,GE = \frac{1}{2}GC\)

Do đó \(GD + GE = \frac{1}{2}\left( {GB + GC} \right)\).

Mặt khác: BG + CG > BC (bất đẳng thức trong tam giác GCB).

Suy ra \(GD + GE > \frac{1}{2}BC\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có AB = 5 cm, BC = 9 cm và CA = 13 cm. Sắp xếp các góc của ∆ABC theo số đo giảm dần là

Xem đáp án » 25/01/2024 112

Câu 2:

Một cái bể dạng hình hộp chữ nhật có chiều dài 1,8 m và chiều rộng bằng \(\frac{4}{9}\) chiều dài. Hỏi người ta phải đổ vào trong bể (chưa có nước) đó bao nhiêu lít nước để lượng nước trong bể cao 0,5 m?

Xem đáp án » 25/01/2024 106

Câu 3:

Gieo ngẫu nhiên con xúc xắc 6 mặt cân đối một lần. Xét các biến cố:

A: “Số chấm xuất hiện trên con xúc xắc là số có một chữ số”;

B: “Số chấm xuất hiện trên con xúc xắc là số chẵn”;

C: “Số chấm xuất hiện trên con xúc xắc chia hết cho 9”.

a) Trong các biến cố trên, biến cố nào là biến cố chắc chắn, biến cố không thể, biến cố ngẫu nhiên?

b) Tính xác suất của biến cố ngẫu nhiên được xác định ở câu a.

Xem đáp án » 25/01/2024 102

Câu 4:

Số hữu tỉ x trong tỉ lệ thức sau: \[\frac{{2x + 3}}{{24}} = \frac{{3x - 1}}{{32}}\]

Xem đáp án » 25/01/2024 99

Câu 5:

Phát biểu nào sau đây sai?

Xem đáp án » 25/01/2024 99

Câu 6:

Tìm giá trị nguyên của x để đa thức 3x3 + 10x2 – 5 chia hết cho đa thức 3x + 1.

Xem đáp án » 25/01/2024 96

Câu 7:

Cho hai đa thức: P(x) = x2(2x3 – 3) + 5x4 – 7x3 + x2 – x;

                                                          Q(x) = 3x4 – 2x2(x3 – 3) – 2x3 + x2 – 1.

a) Thu gọn và sắp xếp mỗi đa thức trên theo lũy thừa giảm dần của biến.

b) Tìm đa thức R(x) biết P(x) = Q(x) + R(x). Xác định bậc, hệ số cao nhất và hệ số tự do của đa thức R(x).

c) Chứng tỏ rằng x = 0 là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x).

Xem đáp án » 25/01/2024 95

Câu 8:

Hình lập phương không có đặc điểm nào sau đây?

Xem đáp án » 25/01/2024 93

Câu 9:

Đa thức nào sau đây có bậc là 0?

Xem đáp án » 25/01/2024 90

Câu 10:

Bộ ba độ dài nào dưới đây không thể là độ dài ba cạnh của một tam giác?

Xem đáp án » 25/01/2024 86

Câu 11:

Bạn Nam đi mua vở và nhẩm tính với số tiền hiện có thì chỉ mua được 10 quyển vở loại I hoặc 12 quyển vở loại II hoặc 15 quyển vở loại III. Biết rằng tổng giá trị tiền 1 quyển vở loại I và 2 quyển vở loại III nhiều hơn giá tiền 2 quyển vở loại II là 4 000 đồng. Tính giá tiền quyển vở loại III.

Xem đáp án » 25/01/2024 83

Câu 12:

Cho biểu thức C = –y2 + 3x3 + 10. Giá trị của biểu thức C tại x = –1; y = 2

Xem đáp án » 25/01/2024 80

Câu 13:

Hãy khoanh tròn vào phương án đúng duy nhất trong mỗi câu dưới đây:

Từ đẳng thức \(\frac{4}{{ - 5,12}} = \frac{{2,5}}{{ - 3,2}}\) lập được tỉ lệ thức nào sau đây.

Xem đáp án » 25/01/2024 79

Câu 14:

Trong một tam giác, trực tâm là giao điểm của ba đường gì?

Xem đáp án » 25/01/2024 72

Câu 15:

Cho các phát biểu sau:

(I) Biến cố có khả năng xảy ra cao hơn sẽ có xác suất lớn hơn;

(II) Xác suất xảy ra của mỗi kết quả là \(\frac{1}{n}\), trong đó n là số các kết quả có khả năng xảy ra bằng nhau của một trò chơi.

Chọn kết luận đúng:

Xem đáp án » 25/01/2024 66

Câu hỏi mới nhất

Xem thêm »
Xem thêm »