Câu hỏi:
29/01/2024 52Các giá trị tương ứng của hai đại lượng x và y được cho trong các bảng dưới đây, hỏi bảng nào thể hiện hai đại lượng x và y tỉ lệ thuận với nhau?
Bảng 1 |
Bảng 2 |
||||||||||||||||
Bảng 3 |
Bảng 4 |
A. Bảng 1;
B. Bảng 2;
C. Bảng 3;
D. Bảng 4.
Trả lời:
Đáp án đúng là: A.
+) Trong bảng 1 ta có: \(\frac{{{x_1}}}{{{y_1}}} = \frac{{ - 2}}{{ - 6}} = \frac{1}{3};\) \[\frac{{{x_2}}}{{{y_2}}} = \frac{2}{6} = \frac{1}{3};\frac{{{x_3}}}{{{y_3}}} = \frac{5}{{15}} = \frac{1}{3}.\]
Suy ra \[\frac{{{x_1}}}{{{y_1}}} = \frac{{{x_2}}}{{{y_2}}} = \frac{{{x_3}}}{{{y_3}}} = \frac{1}{3}\].
Do đó đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ là \(\frac{1}{3}.\)
Vậy hai đại lượng x và y trong bảng 1 là hai đại lượng tỉ lệ thuận với nhau.
+) Trong bảng 2: \(\frac{{{x_1}}}{{{y_1}}} = \frac{{ - 2}}{{ - 6}} = \frac{1}{3};\) \[\frac{{{x_2}}}{{{y_2}}} = \frac{2}{6} = \frac{1}{3};\frac{{{x_3}}}{{{y_3}}} = \frac{5}{{ - 15}} = - \frac{1}{3}.\]
Suy ra \[\frac{{{x_1}}}{{{y_1}}} = \frac{{{x_2}}}{{{y_2}}} \ne \frac{{{x_3}}}{{{y_3}}}\]
Do đó hai đại lượng x và y trong bảng 2 không là hai đại lượng tỉ lệ thuận với nhau.
+) Trong bảng 3: \(\frac{{{x_1}}}{{{y_1}}} = \frac{2}{{ - 6}} = - \frac{1}{3};\) \[\frac{{{x_2}}}{{{y_2}}} = \frac{2}{6} = \frac{1}{3};\frac{{{x_3}}}{{{y_3}}} = \frac{5}{{15}} = \frac{1}{3}.\]
Suy ra \[\frac{{{x_1}}}{{{y_1}}} \ne \frac{{{x_2}}}{{{y_2}}} = \frac{{{x_3}}}{{{y_3}}}\]
Do đó hai đại lượng x và y trong bảng 3 không là hai đại lượng tỉ lệ thuận với nhau.
+) Trong bảng 4: \(\frac{{{x_1}}}{{{y_1}}} = \frac{{ - 2}}{6} = - \frac{1}{3};\) \[\frac{{{x_2}}}{{{y_2}}} = \frac{2}{{ - 6}} = - \frac{1}{3};\frac{{{x_3}}}{{{y_3}}} = \frac{5}{{15}} = \frac{1}{3}.\]
Suy ra \[\frac{{{x_1}}}{{{y_1}}} = \frac{{{x_2}}}{{{y_2}}} \ne \frac{{{x_3}}}{{{y_3}}}\]
Do đó hai đại lượng x và y trong bảng 4 không là hai đại lượng tỉ lệ thuận với nhau.
Vậy hai đại lượng x và y trong bảng 1 là hai đại lượng tỉ lệ thuận với nhau.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biết x và y trong bảng là hai đại lượng tỉ lệ thuận.
x |
x1 = −4 |
x2 |
x3 = −2 |
y |
y1 |
y2 = 6 |
y3 = 4 |
Giá trị của y1 và x2 trong bảng trên là:
Câu 2:
Cho biết x và y là hai đại lượng tỉ lệ thuận với nhau và khi x = −5 thì y = 10. Hệ số tỉ lệ của y đối với x là:
Câu 3:
Cho đại lượng y tỉ lệ thuận với đại lượng x và khi x = 5 thì y = −15. Khi y = −6 thì x có giá trị là:
Câu 4:
Giá tiền của 9 quyển vở là bao nhiêu biết giá tiền của 6 quyển vở cùng loại là 72 000 đồng?
Câu 5:
Biết y tỉ lệ thuận với x theo hệ số tỉ lệ là 2, z tỉ lệ thuận với y theo hệ số tỉ lệ là 5. Phát biểu nào sau đây là đúng?
Câu 6:
Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là 2022 thì đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ là:
Câu 7:
Ba chị Thảo, Tuyết và Chi có năng suất lao động tương ứng tỉ lệ với 2, 5, 7. Tính số tiền chị Chi được thưởng biết tổng số tiền thưởng của ba người là 21 triệu đồng.
Câu 8:
Để làm thuốc ho người ta ngâm chanh đào với mật ong và đường phèn theo tỉ lệ. Cứ 0,2 kg chanh đào thì cần 100 g đường phèn và 0,2 l mật ong. Với tỉ lệ đó, nếu muốn ngâm 3 kg chanh đào thì cần bao nhiêu ki – lô – gam đường phèn và bao nhiêu lít mật ong?
Câu 9:
Khối lượng và thể tích của các thanh sắt là hai đại lượng tỉ lệ thuận. Biết thanh sắt A và thanh sắt B có thể tích lần lượt là 29 cm3 và 23 cm3. Tính tỉ số giữa khối lượng của thanh sắt A và khối lượng của thanh sắt B.
Câu 10:
Đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \(\frac{1}{3}\) khi:
Câu 11:
Một máy in in được 50 trang trong 2 phút. Hỏi trong 5 phút máy in đó in được bao nhiêu trang?
Câu 13:
Biết rằng y1 tỉ lệ thuận với x1 theo hệ số tỉ lệ k (k ≠ 0) và y2 tỉ lệ thuận với x2 theo hệ số tỉ lệ k. Phát biểu nào sau đây là đúng?
Câu 14:
Cho x và y là hai đại lượng tỉ lệ thuận. Gọi x1, x2 là hai giá trị của x và y1, y2 là hai giá trị tương ứng của y. Biết rằng x1 = 4; x2 = −10 và y1 – y2 = 7. Tính y1 và y2.