a) Dùng định nghĩa, tính đạo hàm của hàm số y = x3 + x2 tại điểm x bất kì. b) So sánh: (x3 + x2)' và (x3)' + (x2)'.

a) Dùng định nghĩa, tính đạo hàm của hàm số y = x3 + x2 tại điểm x bất kì.

b) So sánh: (x3 + x2)' và (x3)' + (x2)'.

Trả lời

a)

Đặt f(x) = y = x3 + x2­.

Với x0 bất kì, ta có:

y'=f'(x0)=limxx0f(x)f(x0)xx0=limxx0x3+x2x03x02xx0

=limxx0x3x03+x2x02xx0=limxx0xx0x2+xx0+x02+x+x0xx0

=limxx0x2+xx0+x02+x+x0=3x02+2x0.

Vậy đạo hàm của hàm số y = x3 + x2 là hàm số y' = 3x2 + 2x.

b)

Ta có (x3)' = 3x2 ; (x2)' = 2x, do đó (x3)' + (x2)' = 3x2 + 2x.

Từ đó suy ra (x3 + x2)' = (x3)' + (x2)' (cùng bằng 3x2 + 2x).

Câu hỏi cùng chủ đề

Xem tất cả