60 Bài tập đại lượng tỉ lệ thuận (có đáp án năm 2024) - Toán 7

1900.edu.vn xin giới thiệu: Tổng hợp các dạng bài tập về đại lượng tỉ lệ thuận Toán 7. Đây sẽ là tài liệu tham khảo hữu ích, giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán 7, giải bài tập Toán 7 tốt hơn. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây.

Bài tập đại lượng tỉ lệ thuận

Kiến thức cần nhớ

1. Khái niệm

- Nếu đại lượng y liên hệ với đại lượng x theo công thức y = kx (với k là một hằng số khác 0) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ k.

- Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ k thì x tỉ lệ thuận với y theo hệ số tỉ lệ 1k. Ta nói x và y là hai đại lượng tỉ lệ thuận với nhau.

Ví dụ:

a) Nếu y = 2x thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ 2. Khi đó x cũng tỉ lệ thuận với y theo hệ số tỉ lệ 12.

b) Chu vi đường tròn C và đường kính d liên hệ với nhau bởi công thức C = π . d. Khi đó C tỉ lệ thuận với d theo hệ số tỉ lệ là π (π ≈ 3,14).

2. Tính chất

Nếu hai đại lượng tỉ lệ thuận với nhau thì:

- Tỉ số hai giá trị tương ứng của chúng luôn không đổi;

- Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.

Cụ thể: Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ k. Với mỗi giá trị x1, x2, x3,… khác 0 của x, ta có một giá trị tương ứng y1, y2, y, … của y. Khi đó:

y1x1=y2x2=y3x3=...=k;

x1x2=y1y2;  x1x3=y1y3;...

Ví dụ: Khối lượng và thể tích của các thanh kim loại đồng chất là hai đại lượng tỉ lệ thuận với nhau. Biết hai thanh kim loại đồng chất có thể tích lần lượt là 10 cm3 và 15 cm3. Tính tỉ số khối lượng của hai thanh kim loại đó.

Hướng dẫn giải

Gọi m1 (gam) và m2 (gam) lần lượt là khối lượng của hai thanh kim loại có thể tích 10 cm3 và 15 cm3.

Áp dụng tính chất của đại lượng tỉ lệ thuận ta có m1m2=1015=23.

3. Một số bài toán

Bài toán 1:  Một máy in trong 5 phút in được 120 trang. Hỏi trong 3 phút máy in đó in được bao nhiêu trang?

Hướng dẫn giải

Gọi x (phút), y (trang) lần lượt là thời gian in và số trang mà máy in đã in được. Khi đó mỗi quan hệ giữa thời gian (x) và số trang in được (y) được cho bởi bảng sau:

Thời gian (x)

x1 = 5

x2 = 3

Số trang in (y)

y1 = 120

y2 = ?

Ta có thời gian in tỉ lệ thuận với số trang in được theo hệ số tỉ lệ k=1205=24.

Suy ra y23=24. Vì thế y2 = 24 . 3 = 72.

Vậy trong 3 phút máy in in được 72 trang.

Bài toán 2: Hai thanh chì có thể tích là 12 cm3 và 17 cm3. Hỏi mỗi thanh nặng bao nhiêu gam, biết rằng thanh thứ hai nặng hơn thanh thứ nhất 56,5 g?

Hướng dẫn giải

Gọi khối lượng của hai thanh chì tương ứng là m1 gam và m2 gam. Khi đó m2 – m1 = 56,5 (g)

Do khối lượng và thể tích của vật thể là hai đại lượng tỉ lệ thuận với nhau. Do đó, ta có:

m112=m217.

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: m112=m217=m2m11712=56,55=11,3.

Suy ra m1 = 12 . 11,3 = 135,6 ;   m2 = 17 . 11,3 = 192,1.

Vậy hai thanh chì có khối lượng là 135,6 gam và 192,1 gam.

Các dạng bài tập đại lượng tỉ lệ thuận

Dạng 1: Xác định tương quan giữa hai đại lượng tỉ lệ thuận.

+ Bài toán 1. Nhận biết hai đại lượng tỉ lệ thuận với nhau. Xác định hệ số tỉ lệ và công thức biểu diễn đại lượng tỉ lệ thuận.

+ Bài toán 2. Xét tương quan tỉ lệ thuận giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng.

Dạng 2: Dựa vào tính chất của tỉ lệ thuận để tìm các đại lượng.

Dạng 3: Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ thuận.

Dạng 4: Một số bài toán đơn giản về đại lượng tỉ lệ thuận.

Dạng 5: Chia một số thành những phần tỉ lệ thuận với các số cho trước.

Bài tập (có đáp án)

1. Bài tập vận dụng

A. Bài tập tự luận

Bài 1. 5 mét dây đồng nặng 43 gam. Hỏi 10 km dây đồng như thế nặng bao nhiêu kilogam?

Hướng dẫn giải

Gọi x (gam) và y (mét) lần lượt là khối lượng và chiều dài của dây đồng.

Đổi 10 km = 10 000m

Khi đó mối quan hệ giữa khối lượng (x) và chiều dài (y) được cho bởi bảng sau:

Khối lượng (x)

x1 = 43

x2 = ?

Chiều dài (y)

y1 = 5

y2 = 10 000

Ta có chiều dài tỉ lệ thuận với khối lượng của dây theo hệ số tỉ lệ k=y1x1=543

Suy ra y2x2=10000x2=543. Vì thế x2=10000.435=86000 (gam) = 86 (kg)

Vậy 10km dây đồng nặng 86 kg.

Bài 2. Học sinh của ba lớp 7 cần trồng và chăm sóc 24 cây xanh. Lớp 7A có 32 học sinh, lớp 7B có 28 học sinh, lớp 7C có 36 học sinh. Hỏi mỗi lớp phải trồng và chăm sóc bao nhiêu cây xanh, biết số cây xanh tỉ lệ thuận với số học sinh của lớp.

Hướng dẫn giải

Gọi số cây xanh mỗi lớp 7A, 7B, 7C cần trồng và chăm sóc lần lượt là x (cây), y (cây), z (cây).

Vì số cây tỉ lệ thuận với số học sinh của lớp nên ta có: x32=y28=z36 và x + y + z = 24.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 x32=y28=z36=x+y+z32+28+36=2496=14=0,25.

Do đó x = 32 . 0,25 = 8

y = 28 . 0,25 = 7

z = 36 . 0,25 = 9

Vậy số cây mà mỗi lớp 7A, 7B, 7C cần trồng và chăm sóc lần lượt là 8 (cây); 7 (cây); 9 (cây).

B. Bài tập trắc nghiệm

Câu 1. Đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ 13 khi:

A. xy = 3;

B. xy=13; 

C. x = 3y;

D. y = 3x.

Hướng dẫn giải

Đáp án đúng là: D.

Vì đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ 13 nên ta có x=13y.

Suy ra y = 3x.

Vậy y = 3x.

Câu 2. Cho biết x và y trong bảng là hai đại lượng tỉ lệ thuận.

x

x1 = −4

x2

x3 = −2

y

y1

y2 = 6

y3 = 4

Giá trị của y1 và x2 trong bảng trên là:

A. y= 8; x2 = 3;

B. y1 = −8; x2 = −3;

C. y1 = −8; x= 3;

D. y1 = 8; x2 = −3.

Hướng dẫn giải

Đáp án đúng là: D.

Gọi k (k ≠ 0) là hệ số tỉ lệ của y đối với x.

Vì đại lượng y tỉ lệ thuận với đại lượng x nên ta có y = kx.

Từ bảng ta có khi x3 = −2 thì y3 = 4 do đó 4 = k.(−2)

Suy ra k=42=2 (thoả mãn)

Vậy y = −2x.

Với x1 = −4 thì y1 = (−2).(−4) = 8, do đó y1 = 8;

Với y2 = 6 thì 6 = (−2).x2 suy ra x2=62=3, do đó x2 = −3.

Vậy y1 = 8; x2 = −3.

Câu 3. Ba chị Thảo, Tuyết và Chi có năng suất lao động tương ứng tỉ lệ với 2, 5, 7. Tính số tiền chị Chi được thưởng biết tổng số tiền thưởng của ba người là 21 triệu đồng, biết số tiền thưởng chia theo năng suất làm việc.

A. 1,5 triệu đồng;

B. 3 triệu đồng;

C. 7,5 triệu đồng;

D. 10,5 triệu đồng.

Hướng dẫn giải

Đáp án đúng là: D.

Gọi x, y, z (triệu đồng) lần lượt là số tiền thưởng của chị Thảo, chị Tuyết và chị Chi (0 < x, y, z < 15).

Vì năng suất lao động của ba người tương ứng tỉ lệ với 2; 5; 7 nên số tiền thưởng cũng tỉ lệ thuận với 2; 5; 7. Do đó x2=y5=z7.

Mà tổng số tiền thưởng của ba người là 21 triệu đồng nên x + y + z = 21.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x2=y5=z7=x+y+z2+5+7=2114=1,5

Suy ra:

+) x2=1,5 nên x = 1,5 . 2 = 3 (thoả mãn);

+) y5=1,5 nên y = 5 . 1,5 = 7,5 (thoả mãn);

+) z7=1,5 nên z = 7 . 1,5 = 10,5 (thoả mãn).

Vậy số tiền thưởng của chị Chi là 10,5 triệu đồng.

2. Bài tập tự luyện có hướng dẫn

Xem thêm các dạng bài tập Toán khác :

70 Bài tập về đại lượng tỉ lệ nghịch (có đáp án năm 2023)

60 Bài tập về dãy tỉ số bằng nhau (có đáp án năm 2023)

60 Bài tập về tỉ lệ thức (có đáp án năm 2023)

60 Bài tập làm tròn số và ước lượng (có đáp án năm 2023)

60 Bài tập Tập hợp các số thực (có đáp án năm 2024)

60 Bài tập đại lượng tỉ lệ thuận (có đáp án năm 2024) - Toán 7 (trang 1)
Trang 1
60 Bài tập đại lượng tỉ lệ thuận (có đáp án năm 2024) - Toán 7 (trang 2)
Trang 2
60 Bài tập đại lượng tỉ lệ thuận (có đáp án năm 2024) - Toán 7 (trang 3)
Trang 3
60 Bài tập đại lượng tỉ lệ thuận (có đáp án năm 2024) - Toán 7 (trang 4)
Trang 4
60 Bài tập đại lượng tỉ lệ thuận (có đáp án năm 2024) - Toán 7 (trang 5)
Trang 5
60 Bài tập đại lượng tỉ lệ thuận (có đáp án năm 2024) - Toán 7 (trang 6)
Trang 6
60 Bài tập đại lượng tỉ lệ thuận (có đáp án năm 2024) - Toán 7 (trang 7)
Trang 7
60 Bài tập đại lượng tỉ lệ thuận (có đáp án năm 2024) - Toán 7 (trang 8)
Trang 8
Để xem toàn bộ tài liệu, vui lòng tải xuống
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!