Kiến thức cần nhớ
1. Định lí 1
Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau:
- Hai cung bằng nhau căng hai dây bằng nhau.
- Hai dây bằng nhau căng hai cung bằng nhau.
Ví dụ 1. Cho đường tròn (O) như hình vẽ.
Trong hình vẽ () nên AB = CD.
2. Định lí 2
Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau:
- Cung lớn hơn căng dây lớn hơn.
- Dây lớn hơn căng cung lớn hơn.
Ví dụ 2. Cho đường tròn (I) như hình vẽ.
Trong hình vẽ :
3. Bổ sung
Trong một đường tròn:
- Hai cung bị chắn giữa hai dây song song thì bằng nhau.
- Đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy.
- Đường kính đi qua trung điểm của một dây (không đi qua tâm) thì đi qua điểm chính giữa của cung bị căng bởi dây ấy.
- Đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại.
Bài tập tự luyện
Bài 1:
a) Vẽ đường tròn tâm O, bán kính R = 2cm. Nêu cách vẽ cung AB có số đo bằng 60o. Hỏi dây AB dài bao nhiêu xentimet?
b) Làm thế nào để chia được đường tròn thành sáu cung bằng nhau như trên hình 12?
Hình 12
Lời giải
a) + Dùng compa vẽ đường tròn tâm O, bán kính R = 2cm.
+ Trên đường tròn lấy điểm A.Nối OA từ đó vẽ góc
Khi đó ta được cung AB có số đo bằng 60º.
+ ΔAOB có OA = OB,
⇒ ΔAOB đều
⇒ AB = OA = OB = R = 2cm.
b) Chia đường tròn thành 6 cung bằng nhau:
+ Vẽ đường tròn tâm O, bán kính R.
+ Trên đường tròn tâm O, lấy điểm A.
+ Vẽ cung tròn tâm A, bán kính R cắt đường tròn tại B và C.
+ Vẽ cung tròn tâm B và C bán kính R cắt đường tròn tâm O tại giao điểm thứ hai là D và E.
+ Vẽ cung tròn tâm E bán kính R cắt đường tròn (O) tại giao điểm thứ hai là F.
Khi đó, ta chia được đường tròn thành sáu cung bằng nhau như trên
Bài 2: Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại hai điểm A và B. Kẻ các đường kính AOC, AO'D. Gọi E là giao điểm thứ hai của AC với đường tròn (O').
a) So sánh các cung nhỏ BC, BD.
b) Chứng mình rằng B là điểm chính giữa của cung EBD (tức là điểm B chia cung EBD thành hai cung bằng nhau:
Lời giải
a)
Vì (O) và (O’) giao nhau tại A và B nên (1)
Xét tam giác ACD có:
O là trung điểm của AC (tâm – đường kính)
O’ là trung điểm của AD (tâm – đường kính)
Do đó, OO’ là đường trung bình của tam giác ACD
(2)
Từ (1) và (2) ta suy ra tại B
Xét tam giác ACD có:
AC = AD (do đường tròn (O) bằng đường tròn (O’) nên đường kính của chúng bằng nhau)
Do đó, tam giác ACD cân tại A.
Ta có: tại B nên AB là đường cao và cũng là đường trung tuyến.
BC = BD
Mà đường tròn (O) và đường tròn (O’) bằng nhau
Do đó, cung nhỏ BC bằng cung nhỏ BD (theo định lý liên hệ cung và dây)
b)
Xét đường tròn (O’)
Có: A, E, D cùng nằm trên (O’) và AD là đường kính
Do đó, tam giác AED vuông tại E
tại E
Xét tam giác DEC vuông tại E
Có: B là trung điểm của CD
Do đó, EB là đường trung tuyến ứng với cạnh huyền
Do đó, cung nhỏ EB bằng cung nhỏ BD (theo định lí liên hệ cung và dây)
Vậy điểm B là điểm chính giữa của cung EBD.
Bài 3: Cho tam giác ABC. Trên tia đối của tia AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK với BC và BD (H ∈ BC, K ∈ BD)
a) Chứng minh rằng OH > OK.
b) So sánh hai cung nhỏ BD và BC.
Lời giải
a) Xét ΔABC có: BC < AB + AC (Bất đẳng thức tam giác)
Mà AD = AC (gt)
⇒ BC < AB + AD = BD
Mà OH là khoảng cách từ O đến dây BC
OK là khoảng cách từ O đến dây BD
⇒ OH > OK.( định lý về khoảng cách từ tâm đến dây)
b) Vì BD > BC
⇒
Bài 4: Chứng minh rằng: trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau.
Lời giải
Vẽ đường tròn tâm O, các dây cung AB // CD.
Cần chứng minh
Cách 1:
Kẻ bán kính MN // AB // CD
MN // AB
+ TH1: AB và CD cùng nằm trong một nửa đường tròn.
.
+ TH2: AB và CD thuộc hai nửa đường tròn khác nhau.
Cách 2:
Kẻ OH ⊥ AB; OK ⊥ CD (H ∈ AB, K ∈ CD)
Vì AB // CD ⇒ O, H, K thẳng hàng.
ΔOAB có OA = OB
⇒ ΔOAB cân tại O
⇒ đường cao OH đồng thời là đường phân giác
⇒
Chứng minh tương tự:
Bài 5:
a) Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây cung căng cung ấy. Mệnh đề đảo có đúng không? Hãy nêu thêm điều kiện để mệnh đề đảo đúng.
b) Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây cung ấy và ngược lại.
Lời giải
a)
Vẽ đường tròn tâm O, dây cung AB.
Gọi I là điểm chính giữa của cung AB.
Gọi OI ∩ AB = H.
ΔAOH và ΔBOH có: AO = OB, ; OH chung
⇒ ΔAOH = ΔBOH (c-g-c)
⇒ AH = BH (hai cạnh tương ứng)
⇒ OI đi qua trung điểm H của AB.
+ Mệnh đề đảo: Đường kính đi qua trung điểm của một dây cung thì đi qua điểm chính giữa của cung đó.
Mệnh đề sai
Ví dụ: Chọn dây cung AB là một đường kính của (O) (AB đi qua O). Khi đó, tồn tại đường kính CD đi qua O là trung điểm của AB nhưng C,D không phải là điểm chính giữa cung AB ( hình vẽ)
Mệnh đề đảo chỉ đúng khi dây cung AB không phải đường kính.
b)
+ Cho đường tròn (O); dây cung AB ;
I là điểm chính giữa cung , H = OI ∩ AB.
⇒ ΔAOH = ΔBOH (cm phần a).
⇒ OH ⊥ AB.
Vậy đường kính đi qua điểm chính giữa của cung thì vuông góc với dây căng cung ấy.
+ Cho đường tròn (O); dây cung AB.
Kẻ đường thẳng OH ⊥ AB (H ∈ AB) cắt đường tròn tại I.
Ta có: ΔABO cân tại O (vì AO = OB = R).
⇒ đường cao OH đồng thời là đường phân giác
⇒ I là điểm chính giữa của cung
Vậy đường kính vuông góc với dây căng cung thì đi qua điểm chính giữa của cung.
Bài 6: Cho tam giác ABC có AB > AC. Trên cạnh AB lấy điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK xuống BC và BD (H ∈ BC, K ∈ BD).
a) Chứng minh rằng OH < OK.
b) So sánh hai cung nhỏ BD và BC.
Lời giải:
a.Áp dụng bất đẳng thức tam giác vào ΔABC , ta có: BC > AB - AC mà AC = AD (gt)
suy ra : BC > AB – AD hay : BC > BD
Vì trong một đường tròn ,dây cung lớn hơn gần tâm hơn nên: OH < OK
b. Theo câu a ,BC > BD
Vì trong một đường tròn, dây cung lớn hơn căng cung lớn hơn nên:
Bài 7: Trên dây cung AB của một đường tròn O, lấy hai điểm C và D chia dây này thành ba đoạn thẳng bằng nhau AC = CD = DB. Các bán kính qua C và D cắt cung nhỏ AB lần lượt tại E và F. Chứng minh rằng:
a) ;
b) .
Lời giải:
a)
Xét tam giác OAB có:
OA = OB (cùng bằng bán kính đường tròn (O))
Do đó, tam giác OAB cân tại O
=>
Xét tam giác OAC và tam giác OBD có:
OA = OB (cùng bằng bán kính đường tròn (O))
(cmt)
AC = BD (gt)
Do đó, tam giác OAC bằng tam giác OBD (cạnh – góc – cạnh)
=> (1)
Mặt khác, ta có:
Góc O1 là góc ở tâm chắn cung nhỏ AE => (2)
Góc O2 là góc ở tâm chắn cung nhỏ BF => (3)
Từ (1), (2), (3) ta suy ra: nên .
b)
Tam giác OAC bằng tam giác OBD (chứng minh phần a)
⇒ OC = OD
Do đó, tam giác OCD cân tại O
=>
Mà (hai góc kề bù)
=>
Xét tam giác CDF có:
⇒ CF > CD
Mà CD = AC
Nên CF > AC
Xét tam giác OAC và tam giác OCF có:
OA = OF (cùng bằng bán kính đường tròn (O))
OC là cạnh chung
AC < CF (chứng minh trên)
=> (hai tam giác có 2 cạnh bằng nhau từng đôi một, cạnh thứ ba không bằng nhau thì đối diện cạnh lớn hơn là góc lớn hơn)
Mà:
Góc O1 là góc ở tâm chắn cung nhỏ AE =>
Góc O3 là góc ở tâm chắn cung nhỏ EF =>
Do đó: .
Bài 8: Cho đường tròn tâm O.Trên nửa đường tròn đường kính AB lấy hai điểm C, D. Từ C kẻ CH vuông góc với AB,nó cắt đường tròn tại điểm thứ hai là E. Từ A kẻ AK vuông góc với DC, nó cắt đường tròn tại điểm thứ hai là F. Chứng minh rằng:
a. Hai cung nhỏ CF và BD bằng nhau
b. Hai cung nhỏ BF và DE bằng nhau
c. DE = BF
Lời giải:
a. Ta có : ΔABF nội tiếp trong (O) và AB là đường kính cuả (O) nên ΔABF vuông tại F
Suy ra: BF ⊥ AK
Mà AK ⊥ CD (gt)
Nên : BF // CD
Bài 9: Cho đường tròn tâm O.Gọi I là điểm chính giữa của cung AB (không phải là cung nửa đường tròn) và H là trung điểm của dây AB .Chứng minh rằng đường thẳng IH đi qua tâm O của đường tròn
Lời giải:
Suy ra : IA =IB (hai cung bằng nhau căng hai dây bằng nhau)
Hay I nằm trên đường trung trực của AB
Mà OA =OB (=R)
Nên O nằm trên đường trung trực của AB
Suy ra OI là đường trung trực của AB
Vì H là trung điểm của AB nên OI đi qua trung điểm H
Vậy ba điểm I, H, O thẳng hàng
Bài 10: Cho đường tròn (O; R). Hãy vẽ hai cung (không phải là cung lớn) biết rằng cung này có số đo gấp 3 lần số đo cung kia và có dây căng cung dài gấp đôi dây căng cung kia
Lời giải:
Vì hai cung không phải là cung lớn nên nó có thể là cung nhỏ hoặc cung nửa đường tròn
Cung nửa đường tròn có số đo bằng 180° và dây căng cung bằng 2R
Cung 60° có dây căng cung là R
Vậy cung nửa đường tròn và cung 60° thỏa mãn bài toán