Tổng và hiệu của hai vectơ
1. Lí thuyết
- Tổng của hai vectơ: Cho hai vectơ tùy ý. Lấy một điểm A tùy ý, vẽ vectơ Vectơ được gọi là tổng của hai vectơ tức là: .
- Tính chất của phép cộng các vectơ: Với các vectơtùy ý ta có:
+) (tính chất giao hoán);
+) (tính chất kết hợp);
+) (tính chất của vectơ – không)
- Vectơ đối: Vectơ có cùng độ dài và ngược hướng với vectơđược gọi là vectơ đối của vectơ . Kí hiệu là -.
- Hiệu của hai vectơ: Cho hai vectơ tùy ý. Ta có: .
- Quy tắc ba điểm: Với A, B, C tùy ý ta luôn có: và
- Quy tắc hình bình hành: Nếu ABCD là hình bình hành thì .
- Quy tắc trung điểm: Với I là trung điểm của đoạn thẳng AB ⇔ .
- Quy tắc trọng tâm: Với G là trọng tâm của tam giác ABC ⇔ .
- Chú ý: Vectơ đối của vectơ - không là vectơ - không.
2. Các dạng bài
Dạng 1: Tìm tổng của hai hay nhiều vectơ
Phương pháp giải:
Dùng định nghĩa tổng của hai vectơ, quy tắc ba điểm về tổng, quy tắc hình bình hành và các tính chất của tổng các vectơ.
Ví dụ minh họa:
Bài 1: Cho 5 điểm tùy ý A, B, C, D, E. Tính tổng .
Giải:
=(áp dụng tính chất giao hoán và kết hợp)
=(áp dụng quy tắc ba điểm)
= (áp dụng tính chất giao hoán)
= (áp dụng quy tắc ba điểm)
Bài 2: Cho hình vuông ABCD tâm O. Tính tổng và
Giải:
+) Vì ABCD là hình vuông ⇒ AB // DC và AB = DC.
⇒
+) Áp dụng quy tắc ba điểm cho D, C, B ta có:
⇒
+) Vì A, O, C cùng nằm trên một đường thẳng và OA = OC (O là tâm hình vuông ABCD) ⇒ ⇒
+) Áp dụng quy tắc ba điểm cho O, A, D ta có: ⇒
Dạng 2: Tìm vectơ đối và hiệu của hai vectơ
Phương pháp giải:
Dùng định nghĩa hiệu của hai vectơ, tìm vectơ đối và áp dụng quy tắc ba điểm về hiệu.
Ví dụ minh họa:
Bài 1: Cho hình vuông ABCD có tâm O. Tìm vectơ đối của các vectơ .
Giải:
+) Vì = AB và ngược hướng với .
+) Vì AB = DC , AB // DC (do ABCD là hình vuông)
⇒ và ngược hướng với .
+) Vì A, O, C là ba điểm thẳng hàng và OA = OC (do ABCD là hình vuông)
⇒ ngược hướng với và ⇒ .
Vậy là vectơ đối của vectơ và là vectơ đối của .
Bài 2: Cho hình chữ nhật ABCD. Hai đường chéo AC và BD cắt nhau tại O. Tính các hiệu .
Giải:
+) Vì = AB và ngược hướng với .
+) Ta có: .
+) Áp dụng quy tắc ba điểm cho ba điểm A, D, B có: .
+) Vì= OD và ngược hướng với .
+) Ta có: .
Dạng 3: Chứng minh đẳng thức vectơ
Phương pháp giải: Sử dụng quy tắc ba điểm, quy tắc hình bình hành, trung điểm, trọng tâm, để biến đổi vế này thành vế kia của đẳng thức hoặc biến đổi cả hai vế để được hai vế bằng nhau hoặc ta cũng có thể biến đổi đẳng thức véctơ cần chứng minh đó tương đương với một đẳng thức vectơ đã được công nhận là đúng.
Ví dụ minh họa:
Bài 1: Cho sáu điểm tùy ý A, B, C, D, E, F. Chứng minh đẳng thức sau:
Giải:
+) Áp dụng quy tắc ba điểm ta có: .
⇒ VT =
⇒ VT =
+) Áp dụng quy tắc ba điểm ta có:
⇒ VT =
⇒ VT = (điều cần phải chứng minh)
Bài 2: Cho tam giác ABC. Cho M, N, P lần lượt là trung điểm của AB, AC, BC. Điểm O bất kì. Chứng minh đẳng thức: .
Giải:
Giả sử là đúng.
⇒
⇒ (1)
Vì N là trung điểm của AC ⇒
Xét tam giác ABC có MN là đường trung bình và P là trung điểm của BC .
⇒ MN = BC = BP ⇒
(1) ⇔
⇔
⇔
⇔ (luôn đúng)
Đẳng thức là đúng.
Dạng 4: Tính độ dài các vectơ tổng hoặc hiệu
Phương pháp giải:
Đưa tổng hoặc hiệu của các véctơ về một véctơ có độ dài là một cạnh của đa giác để tính độ dài của vectơ.
Ví dụ minh họa:
Bài 1: Cho hình chữ nhật ABCD. Biết AB = 4a, AD = 2a. Tính .
Giải:
+) Áp dụng quy tắc hình bình hành ta có:
⇒
+) Vì ABCD là hình chữ nhật BC = AD = 2a.
+) Xét tam giác ABC vuông tại B.
Áp dụng định lý Py-ta-go ta có:
AC2 = AB2 + BC2
⇒ AC2 = (4a)2 + (2a)2 = 20a2
⇒ AC =
⇒ = AC =
Bài 2: Cho tam giác ABC đều cạnh a. Tính .
Giải:
+) Vì = AB và ngược hướng với .
⇒
+) Ta có:
⇒
3. Bài tập tự luyện (có đáp án)
Bài 1: Cho hình chữ nhật ABCD. Chứng minh rằng .
Đáp án:
Bài 2: Cho lục giác đều ABCDEF có tâm O. Tính tổng sau:
Đáp án:
Bài 3: Cho 5 điểm tùy ý M, N, P, Q, E. Tính tổng .
Đáp án:
Bài 4: Cho hình thoi ABCD tâm O. Tìm các vectơ đối của vectơ .
Đáp án:
Bài 5: Cho 4 điểm A, B, C, D tùy ý. Tính hiệu .
Đáp án:
Bài 6: Cho tam giác ABC có M, N, P lần lượt là trung điểm của AB, AC, BC. Tính hiệu .
Đáp án:
Bài 7: Cho 5 điểm A, B, C, D, E tùy ý. Chứng minh đẳng thức sau:
Đáp án: VT = = VP
Bài 8: Cho hình bình hành ABCD tâm O. Chứng minh rằng:
Đáp án: VT = VP = mà ⇒ VT = VP
Bài 9: Cho hình bình hành ABCD. O là điểm tùy ý thuộc đường chéo AC. Từ O kẻ đường thẳng song song với các cạnh của hình bình hành, cắt AB tại M, cắt DC tại N, cắt BC tại F, cắt AD tại E. Chứng minh: .
Đáp án: VP = = VT
Bài 10: Cho hình chữ nhật ABCD tâm O . Biết AB = 2a, AD = a. Tính
Đáp án:
Bài 11: Cho tam giác vuông ABC vuông tại A. Có ∠B = 60o , AB = a. Tính .
Đáp án:
Bài 12: Cho hình thoi ABCD tâm O cạnh a. Biết ∠BAD = 60o . Tính
Đáp án:
Xem thêm các dạng bài tập toán hay khác:
80 Bài tập Tổng và hiệu của hai vectơ (có đáp án năm 2023)
80 Bài tập về vectơ trong mặt phẳng tọa độ (có đáp án năm 2024)
90 Bài tập tích vô hướng của hai vectơ (có đáp án năm 2023)
80 Bài tập số gần đúng và sai số (có đáp án năm 2023)
80 Bài tập các số đặc trưng đo độ phân tán (có đáp án năm 2023)