Trắc nghiệm Toán 10 KNTT Bài 24. Hoán vị, tổ hợp, chỉnh hợp (Phần 2) có đáp án
Trắc nghiệm Toán 10 KNTT Bài 24. Hoán vị, tổ hợp, chỉnh hợp (Vận dụng) có đáp án
-
308 lượt thi
-
5 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
Một nhóm 6 bạn học sinh mua vé vào rạp xem phim. Các bạn mua 6 vé gồm 3 vé mang ghế số chẵn, 3 vé mang ghế số lẻ và không có hai vé nào cùng số. Trong sáu bạn thì hai bạn muốn ngồi bên ghế chẵn, hai bạn muốn ngồi bên ghế lẻ, hai bạn còn lại không có yêu cầu gì. Hỏi có bao nhiêu cách xếp để thoả mãn các yêu cầu của các bạn đó
Hướng dẫn giải
Đáp án đúng là: C
Xếp hai bạn vào 2 trong 3 ghế mang số chẵn có cách.
Xếp hai bạn vào 2 trong 3 ghế mang số lẻ có cách.
Xếp 2 bạn vào 2 vị trí còn lại có 2! cách.
Vậy số cách sắp xếp để thoả mãn yêu cầu của các bạn đó là: 2!. = 72 cách.
Câu 2:
Có bao nhiêu cách cắm 3 bông hoa giống nhau vào 5 lọ khác nhau (mỗi lọ cắm không quá một bông)?
Hướng dẫn giải
Đáp án đúng là: A
Vì mỗi lọ cắm không quá một bông nghĩa là 3 bông hoa sẽ được cắm vào 3 lọ khác nhau
Như vậy mỗi cách chọn 3 lọ hoa trong 5 lọ để cắm hoa là một tổ hợp chập 3 của 5.
Vậy có cách để cắm 3 bông hoa giống nhau vào 5 lọ hoa.
Câu 3:
Giải hệ phương trình sau:
Hướng dẫn giải
Đáp án đúng là: D
Điều kiện: x, y ∈ ℕ; x ≤ y
Ta có: ⇔
Ta có: hay 20 = x!.10 ⇒ x! = 2 ⇒ x = 2
Mặt khác, ta có:
⇔
⇔
⇔ y(y – 1) = 20
⇔ y2 – y – 20 = 0
⇔
Theo điều kiện chọn y = 5
Vậy x = 2 và y = 5.
Câu 4:
Cho hình vuông ABCD. Trên cạnh AB; CD; DA lần lượt lấy 1; 2; 3 và n điểm phân biệt n ≥ 3 khác A; B; C; D. Tìm n biết số tam giác lấy từ n + 6 điểm trên là 439:
Hướng dẫn giải
Đáp án đúng là: C
Chọn 3 điểm bất kì trong n + 6 điểm đã cho có cách
Trên cạnh CD chọn ra được 1 bộ ba điểm thẳng hàng.
Trên cạnh DA chọn được bộ ba điểm thẳng hàng.
Vì mỗi tam giác được tạo thành từ 3 điểm không thẳng hàng.
Nên số tam giác được tạo thành là – – 1 = 439
⇔ – = 440
⇔ = 440
⇔ = 440
⇔ = 440
⇔ (n + 6)(n + 5)(n + 4) – n(n – 1)(n – 2) = 2640
⇔ n3 + 15n2 + 74n + 120 – (n3 – 3n2 + 2n) = 2640
⇔18n2 + 72n + 120 = 2640
⇔ n2 + 4n – 140 = 0
⇔
Vậy n = 10.
Câu 5:
Tìm n ∈ ℕ sao cho:.
Hướng dẫn giải
Đáp án đúng là: A
Điều kiện : n ≥ 2; n ∈ ℕ
Ta có:
⇔
⇔
⇔
⇔ n2 + 2n + 48 = 0
⇔
Theo điều kiện thì n = 6.