Trắc nghiệm Toán 10 Bài ôn tập cuối chương 3 (Vận dụng) có đáp án
-
248 lượt thi
-
5 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
Tam giác ABC có BC = a, AC = b, AB = c. Các cạnh a, b, c liên hệ với nhau bằng đẳng thức b.( b2 – a2 ) = c.( a2 – c2 ). Tính .
Hướng dẫn giải
Đáp án đúng là: D
b.( b2 – a2 ) = c.( a2 – c2 )
⟺ b3 – a2b – a2c + c3 = 0
⟺ b3 + c3 – ( a2b + a2c ) = 0
⟺ ( b + c )( b2 – bc + c2 ) – a2( b + c ) = 0
⟺ ( b + c ) ( b2 + c2 – a2 – bc ) = 0
b và c là cạnh tam giác nên b + c > 0
⇒ b2 + c2 – a2 – bc = 0 hay a2 = b2 + c2 – bc
Theo định lí côsin
a2 = b2 + c2 – 2bccosA
mà a2 = b2 + c2 – bc ⇒ cosA = ⇒ = 60°.
Vậy đáp án đúng là D.
Câu 2:
Cho 3cosα – sinα = 1; 0° < α < 90°. Tính tanα.
Hướng dẫn giải
Đáp án đúng là: A
3cosα – sinα = 1
⇔ 3cosα = 1 + sinα
⇒ 9cos2α = (sinα + 1)2 = sin2α + 2.sin α +1
⇒ 9 – 9sin2 α = sin2α + 2.sin α +1
⇒ 10 sin2α + 2.sinα – 8 = 0
⇒ sinα = – 1 hoặc sinα =
Với sinα = – 1 không thỏa mãn
Với sinα = ⇒ cosα = .
Vậy tanα =
Câu 3:
Trên nóc tòa nhà có một cột ăng – ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất có thể quan sát được đỉnh B và chân C của cột ăng – ten dưới góc 50° và 40° so với phường nằm ngang. Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?
Hướng dẫn giải
Đáp án đúng là: B
Gọi điểm H là chân tòa nhà. Điểm D là điểm tương ứng trên tòa nhà ngang bằng với vị trí quan sát A. Như vậy = 90°.
Từ vị trí quan sát A cao 7m so với mặt đất có thể quan sát được đỉnh B và chân C của cột ăng – ten dưới góc 50° và 40° so với phường nằm ngang. Như vậy = 40° và = 50°.
Xét tam giác ABD có: = 180 – – = 180° – 90° – 50° = 40° =
Xét tam giác ABC có:
= 50° – 40° = 10°.
Áp dụng định lí sin cho tam giác ABC:
⇒ AC ≈ 18,5m
Áp dụng định lí sin cho tam giác ADC:
⇒ CD ≈ 11,9m
Chiều cao tòa nhà tương ứng với đoạn CH.
CH = CD + DH = 11,9 + 7 = 18,9 ≈ 19m.
Vậy đáp án đúng là B.
Câu 4:
Cho biết . Tính cotα biết 0° < α < 90°.
Hướng dẫn giải
Đáp án đúng là: C
2cosα + sinα = 2 ⟺ sinα = 2 – 2cosα ⇒ 2sin2α = 4 – 8cos + 4 cos2α
⟹ 2 – 2cos2α = 4 – 8cosα + 4cos2α
⟹ 6cos2 α – 8cosα + 2 = 0
cosα = 1 không thỏa mãn 0° < α < 90°.
cosα = ⇒ cotα= .
Câu 5:
Hai chiếc tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60°. Tàu tới B chạy với tốc độ 20 hải lí một giờ. Tàu tới C chạy với tốc độ 15 hải lí một giờ. Hỏi sau hai giờ hai tàu cách nhau bao nhiêu hải lí? ( Chọn kết quả gần nhất ).
Hướng dẫn giải
Đáp án đúng là: B
Sau 2h, tàu tới C đi được đoạn đường b = 15.2 = 30 ( hải lí )
Sau 2h, tàu tới B đi được đoạn đường c = 15.2 = 40 ( hải lí )
Dựa vào hình vẽ, sau 2h, tàu B và tàu C tạo với điểm xuất phát một tam giác ABC có
= 60°, b = 30, c = 40 và a = BC.
Áp dụng định lí côsin ta có:
a2 = b2 + c2 – 2bccosA
a2 = 302 + 402 – 2.30.40.cos60°
a2 = 1300
a ≈ 36 ( hải lí ).
Vậy đáp án đúng là B.