Giải Sách bài tập Toán lớp 7 Bài 2: Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
Giải SBT Toán 7 trang 56 Tập 1
Lời giải
a) Quan sát Hình 4a), ta thấy khối hộp này được ghép bởi 12 khối đơn vị (có 2 hàng, mỗi hàng 6 khối), do đó thể tích của khối hộp là 12 cm3.
b) Quan sát Hình 4b), ta thấy khối hộp này được ghép bởi 6 khối đơn vị, do đó thể tích của khối hộp là 6 cm3.
c) Quan sát Hình 4c), ta thấy khối hộp này được ghép bởi 24 khối đơn vị (có 2 cột, mỗi cột 12 khối), do đó thể tích của khối hộp là 24 cm3.
a) Tính thể tích của cái bể.
b) Tính chiều cao mực nước sau khi rót hết một chai nước vào bể.
c) Nếu rót đầy bể thì cần bao nhiêu chai nước.
Lời giải
a) Bể nước có dạng hình hộp chữ nhật có độ dài hai cạnh đáy là 20 cm, 40 cm và chiều cao là 40 cm.
Thể tích của bể là: V = 20 . 40 . 40 = 32 000 (cm3).
b) Quan sát ta thấy chai nước có thể tích là 2 000 cm3 nên khi rót hết một chai nước đầy vào bể thì thể tích nước trong bể lúc này là 2 000 cm3.
Do đó, chiều cao của mực nước sau khi rót hết một chai nước vào bể là:
(cm).
c) Nếu rót đầy bể thì cần số chai nước là: 32 000 : 2 000 = 16 (chai).
Giải SBT Toán 7 trang 57 Tập 1
Tính thể tích của bể.
Lời giải
Chiều rộng của lòng bể (không kể phần thành bể) là: (in).
Chiều dài của lòng bể (không kể phần thành bể) là: (in).
Chiều cao của lòng bể (không kể phần thành bể) là: (in). (do bể không có nắp nên ta chỉ cần trừ đi bề dày của phần đáy bể).
Thể tích của bể là: V = (in3).
Lời giải
Chiều cao của mực nước đổ vào bình là: 30 – 6 = 24 (cm).
Thể tích phần mực nước đổ vào bình là: V = 8 . 10 . 24 = 1 920 (cm3).
Đổi: 1 920 (cm3) = 1,92 dm3 = 1,92 lít.
Vậy số lít nước đổ vào bình là 1,92 lít.
Lời giải
Thùng xe và thùng hàng đều có dạng hình hộp chữ nhật.
Thể tích của thùng xe là: V = 19 . 8 . 8 = 1 216 (ft3).
Thể tích của một thùng hàng là: v = 2 . 2 . 1 = 4 (ft3).
Số thùng hàng có thể chở nếu biết cách sắp xếp hợp lí là: 1 216 : 4 = 304 (thùng).
Ta có thể xếp trong thùng xe thành 8 dãy thùng hàng, mỗi dãy gồm 38 thùng hàng.
Lời giải
Thể tích của bể có chiều cao từ đáy tới mực nước cho phép là:
V = 1 . 0,5 . 0,4 = 0,2 (m3).
Đổi 0,2 m3 = 200 dm3 = 200 lít.
Do đó, cần đổ 200 lít nước thì tới mực nước cho phép.
Mà mỗi can có dung tích 10 lít.
Vậy cần đổ số can nước là: 200 : 10 = 20 (can).
Lời giải
Khối lập phương có cạnh 4 cm, kích thước của hộp chứa là 8 cm, 10 cm, 8 cm.
Do đó, khi xếp các khối lập phương vào hộp, ta chỉ xếp được tối đa 2 hàng (chồng hai khối lập phương lên nhau, chiều cao hai khối lập phương là 4 . 2 = 8 cm chính bằng chiều cao của hộp) và mỗi hàng tối đa là 4 khối, vì thế mỗi hộp chứa được tối đa 2 . 4 = 8 (khối lập phương).
Mà 20 : 8 = 2 (dư 4).
Vậy cần 3 chiếc hộp để chứa 20 khối lập phương.
Bài 8 trang 57 Sách bài tập Toán 7 Tập 1: Hai hình hộp chữ nhật được ghép với nhau như Hình 11.
a) Tính thể tích của khối ghép.
b) Tính diện tích toàn phần của khối ghép.
Lời giải
a) Khối hộp chữ nhật phía sau có kích thước 10 in, 2 in, 9 in nên có thể tích là:
V1 = 10 . 2 . 9 = 180 (in3).
Khối hộp chữ nhật phía trước có kích thước 6 in, 2 in, 9 in nên có thể tích là:
V2 = 6 . 2 . 9 = 108 (in3).
Hai khối hộp chữ nhật được ghép lại như Hình 11 có thể tích là:
V = V1 + V2 = 180 + 108 = 288 (in3).
b) Diện tích toàn phần của khối ghép bằng tổng diện tích toàn phần của hai khối trừ đi hai lần diện tích mặt tiếp xúc nhau.
Diện tích toàn phần của khối hộp chữ nhật bằng tổng diện tích xung quanh và diện tích 2 đáy.
Diện tích toàn phần của khối hộp chữ nhật phía sau là:
S1 = 2 . (10 + 2) . 9 + 2 . 10 . 2 = 256 (in2)
Diện tích toàn phần của khối hộp chữ nhật phía trước là:
S2 = 2 . (6 + 2) . 9 + 2 . 6 . 2 = 168 (in2)
Phần tiếp xúc nhau của hai khối hộp trên là một hình chữ nhật có kích thước là 2 in và 9 in.
Diện tích toàn phần của khối ghép là:
S = (S1 + S2) – 2 . 2 . 9 = (256 + 168) – 36 = 388 (in2).
Xem thêm lời giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Hình hộp chữ nhật - Hình lập phương
Bài 3: Hình lăng trụ đứng tam giác - Hình lăng trụ đứng tứ giác
Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác