Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến, nghịch biến của chúng
108
15/01/2024
Bài 6.6 trang 8 SBT Toán 10 Tập 2: Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến, nghịch biến của chúng.
a) ;
b) y = 3x2;
c) .
Trả lời
a)
Xét hàm số
Ta có:
Khi x = 0 thì
Khi x = 10 thì
Do đó, đồ thị hàm số là đường thẳng đi qua hai điểm (0; 5) và (10; 0).
Ta có hình vẽ đồ thị hàm số:
Tập giá trị của hàm số là: T = ℝ.
Đồ thị hàm số luôn đi xuống từ trái sang phải do đó hàm số nghịch biến trên ℝ.
b)
Xét hàm số y = 3x2
Ta có:
Trục đối xứng: x = 0
Đỉnh parabol là: (0; 0)
Khi x = 1 thì y = 3.12 = 3
Khi x = –1 thì y = 3.(–1)2 = 3
Do đó, đồ thị hàm số là parabol có đỉnh (0; 0) đi qua hai điểm (1; 3) và (–1; 3)
Tập xác định của hàm số là: T = [0; +∞).
Đồ thị hàm số đi xuống từ trái sang phải trên khoảng (–∞; 0) nên hàm số nghịch biến trên khoảng (–∞; 0).
Đồ thị hàm số đi lên từ trái sang phải trên khoảng (0; +∞) nên hàm số đồng biến trên khoảng (0; +∞).
c)
Xét hàm số
+) Khi x ≥ 0, ta có:
y = x2
Do đó, đồ thị hàm số là nửa parabol có trục đối xứng x = 0, đỉnh (0; 0), đi qua điểm (1; 1).
+) Khi x < 0, ta có:
y = –x – 1
Do đó, đồ thị hàm số là một phần đường thẳng đi qua điểm (0; –1) và (–1; 0).
Tập giá trị của hàm số là: T = (–1; +∞)
Đồ thị hàm số đi xuống từ trái sang phải trên khoảng (–∞; 0) nên hàm số nghịch biến trên khoảng (–∞; 0)
Đồ thị hàm số đi lên từ trái sang phải trên khoảng (0; +∞) nên hàm số đồng biến trên khoảng (0; +∞).
Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 14: Các số đặc trưng đo độ phân tán
Bài tập cuối chương 5
Bài 15: Hàm số
Bài 16: Hàm số bậc hai
Bài 17: Dấu của tam thức bậc hai
Bài 18: Phương trình quy về phương trình bậc hai