Trong mặt phẳng tọa độ Oxy, cho phép biến hình f biến mỗi điểm M(x; y) thành điểm M'(3x; – 3y). a) Tìm ảnh của các điểm O(0; 0), N(2; 1). b) Chứng minh rằng f là một phép đồng dạng. Tìm tỉ

Trong mặt phẳng tọa độ Oxy, cho phép biến hình f biến mỗi điểm M(x; y) thành điểm M'(3x; – 3y).

a) Tìm ảnh của các điểm O(0; 0), N(2; 1).

b) Chứng minh rằng f là một phép đồng dạng. Tìm tỉ số đồng dạng.

Trả lời

Lời giải:

a) Ảnh của điểm O(0; 0) qua phép biến hình f là O'(3 . 0; – 3 . 0) ≡ O(0; 0).

Ảnh của điểm N(2; 1) qua phép biến hình f là N'(3 . 2; – 3 . 1) = N'(6; – 3).

b) Chọn hai điểm M(x; y), N(z; t) bất kì. Gọi M', N' tương ứng là ảnh của M, N qua phép biến hình f. Khi đó M'(3x; – 3y), N'(3z; – 3t).

Ta có: MN = \(\sqrt {{{\left( {z - x} \right)}^2} + {{\left( {t - y} \right)}^2}} \)

M'N' = \(\sqrt {{{\left( {3z - 3x} \right)}^2} + {{\left( { - 3t - \left( { - 3y} \right)} \right)}^2}} \)\( = \sqrt {9{{\left( {z - x} \right)}^2} + 9{{\left( {t - y} \right)}^2}} \)\( = 3\sqrt {{{\left( {z - x} \right)}^2} + {{\left( {t - y} \right)}^2}} \)

Suy ra M'N' = 3MN.

Vậy phép biến hình f là phép đồng dạng với tỉ số k = 3.

Câu hỏi cùng chủ đề

Xem tất cả