Trong mặt phẳng tọa độ Oxy, cho hai đường tròn (C1) và (C2) lần lượt có phương trình (x-1)^2+ (y-2)^2=1  

Trong mặt phẳng tọa độ Oxy, cho hai đường tròn C1  C2  lần lượt có phương trình x12+y22=1  x+12+y2=1 . Biết đồ thị hàm số y=ax+bx+c  đi qua tâm của C1 , đi qua tâm của C2  và có các đường tiệm cận tiếp xúc với cả C1  C2 . Tổng a+b+c  

A. 5

B. 8

C. 2

D. 1

Trả lời

Hướng dẫn giải

Đường tròn C1  có tâm I11;2 R1=1   C2  có tâm I21;0 ; R2=1 .

Điều kiện để đồ thị hàm số có tiệm cận là acb0.

Gọi (C) là đồ thị hàm số y=ax+bx+c .

Khi đó ta có các đường tiệm cận (C)   x=cy=a .

Ta có I1,I2Ca+bc+1=2a+bc1=0c±1a=ba=c+1 .

Đường thẳng x=c  tiếp xúc với cả C1  C2  nên c+1=1c1=1c=0

a=b=1

Khi đó tiệm cận ngang của (C)   là y=1 tiếp xúc với cả C1  , C2  thỏa mãn bài toán.

Vậy a=b=1;c=0a+b+c=2 .

Chọn C.

Câu hỏi cùng chủ đề

Xem tất cả