Trong Hình 1.26, ABCDEF là lục giác đều có tâm O. Tìm ảnh của tam giác ACE qua các phép quay Q_( O, pi /3), Q( O, - 2pi /3).
Lời giải:
Ta có: ABCDEF là lục giác đều nên \(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOF} = \widehat {FOA} = 60^\circ = \frac{\pi }{3}\) và OA = OB = OC = OD = OE = OF.
Do đó, phép quay \({Q_{\left( {O,\frac{\pi }{3}} \right)}}\) biến các điểm A, C, E tương ứng thành các điểm B, D, F.
Vậy phép quay \({Q_{\left( {O,\frac{\pi }{3}} \right)}}\) biến tam giác ACE thành tam giác BDF.
Ta có: \(\widehat {AOE} = \widehat {AOF} + \widehat {EOF} = \frac{{2\pi }}{3}\), tương tự \(\widehat {COA} = \widehat {EOC} = \frac{{2\pi }}{3}\).
Vì OA = OE và góc quay \( - \frac{{2\pi }}{3}\) nên phép quay \({Q_{\left( {O,\, - \frac{{2\pi }}{3}} \right)}}\) biến điểm A thành điểm E.
Vì OC = OA và góc quay \( - \frac{{2\pi }}{3}\) nên phép quay \({Q_{\left( {O,\, - \frac{{2\pi }}{3}} \right)}}\) biến điểm C thành điểm A.
Vì OE = OC và góc quay \( - \frac{{2\pi }}{3}\) nên phép quay \({Q_{\left( {O,\, - \frac{{2\pi }}{3}} \right)}}\) biến điểm E thành điểm C.
Vậy phép quay \({Q_{\left( {O,\, - \frac{{2\pi }}{3}} \right)}}\) biến tam giác ACE thành tam giác ECA hay biến tam giác ACE thành chính nó.