Trên đường thẳng d có ba điểm phân biệt I, J, K (J ở giữa I và K). Lấy điểm M nằm ngoài

Trên đường thẳng d có ba điểm phân biệt I, J, K (J ở giữa I và K). Lấy điểm M nằm ngoài đường thẳng d sao cho MJ vuông góc với d tại J. Đường thẳng qua I vuông góc với MK cắt MJ tại N. Khẳng định nào sau đây đúng?

A. IN là đường cao của ∆MIK;

B. MN là đường cao của ∆MIK;

C. KN là đường cao của ∆MIK;

D. Cả A, B, C đều đúng.

Trả lời

Hướng dẫn giải:

Đáp án đúng là: D

Trên đường thẳng d có ba điểm phân biệt I, J, K (J ở giữa I và K). Lấy điểm M nằm ngoài (ảnh 1)

Ta có: MJ IK tại J nên MJ là đường cao của ∆MIK.

Mà N nằm trên đường thẳng qua I và vuông góc với MK nên IN MK.

Do đó IN là đường cao của ΔMIK.

Xét ∆MIK có hai đường cao IN và MJ cắt nhau tại N nên N là trực tâm của ΔMIK.

Do đó KN là đường cao của ∆MIK.

Vậy cả A, B, C đều là khẳng định đúng. Vậy ta chọn phương án D.

Câu hỏi cùng chủ đề

Xem tất cả