Tìm đường đi ngắn nhất từ đỉnh A đến đỉnh I trong đồ thị có trọng số ở Hình 14.
Tìm đường đi ngắn nhất từ đỉnh A đến đỉnh I trong đồ thị có trọng số ở Hình 14.
Tìm đường đi ngắn nhất từ đỉnh A đến đỉnh I trong đồ thị có trọng số ở Hình 14.
– Gán nhãn cho A bằng 0 (tức là, nA = 0), các đỉnh khác bằng ∞. Khoanh tròn đỉnh A.
– Tại các đỉnh kề với A, gồm B, C, D, ta có:
⦁ nB = nA + wAB = 0 + 3 = 3. Vì 3 < ∞ nên ta đổi nhãn của B thành 3.
⦁ nC = nA + wAC = 0 + 6 = 6. Vì 6 < ∞ nên ta đổi nhãn của C thành 6.
⦁ nD = nA + wAD = 0 + 5 = 5. Vì 5 < ∞ nên ta đổi nhãn của D thành 5.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B nên ta khoanh tròn đỉnh B (đỉnh gần đỉnh A nhất, chỉ tính các đỉnh khác đỉnh A).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh B gồm C, E, ta có:
⦁ nC = nB + wBC = 3 + 2 = 5. Vì 5 < 6 (6 là nhãn hiện tại của C) nên ta đổi nhãn của C thành 5.
⦁ nE = nB + wBE = 3 + 10 = 13. Vì 13 < ∞ nên ta đổi nhãn của E thành 13.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là C, D (đều có nhãn là 5) nên ta tùy ý khoanh tròn đỉnh C (đỉnh gần đỉnh A thứ hai).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh C gồm E, D, F, I, ta có:
⦁ nE = nC + wCE = 5 + 5 = 10. Vì 10 < 13 (13 là nhãn hiện tại của E) nên ta đổi nhãn của E thành 10.
⦁ nD = nC + wCD = 5 + 3 = 8. Vì 8 > 5 (5 là nhãn hiện tại của D) nên ta giữ nguyên nhãn của D là 5.
⦁ nF = nC + wCF = 5 + 6 = 11. Vì 11 < ∞ nên ta đổi nhãn của F thành 11.
⦁ nI = nC + wCI = 5 + 8 = 13. Vì 13 < ∞ nên ta đổi nhãn của I thành 13.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là D nên ta khoanh tròn đỉnh D (đỉnh gần đỉnh A thứ ba).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh D chỉ có đỉnh F, ta có:
nF = nD + wDF = 5 + 7 = 12.
Vì 12 > 11 (11 là nhãn hiện tại của F) nên ta giữ nguyên nhãn của F là 11.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là E nên ta khoanh tròn đỉnh E (đỉnh gần đỉnh A thứ tư).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh E chỉ có đỉnh I, ta có:
nI = nE + wEI = 10 + 2 = 12.
Vì 12 < 13 (13 là nhãn hiện tại của I) nên ta đổi nhãn của I thành 12.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là F nên ta khoanh tròn đỉnh F (đỉnh gần A thứ năm).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh F chỉ còn đỉnh I, ta có:
nI = nF + wFI = 11 + 4 = 15.
Vì 15 > 12 (12 là nhãn hiện tại của I) nên ta giữ nguyên nhãn của I là 12.
Lúc này, ta thấy chỉ còn đỉnh I chưa được khoanh tròn nên ta khoanh tròn đỉnh I (đỉnh gần A thứ sáu).
– Nhìn ngược lại các bước trên, ta thấy:
nI = 12 = nE + wEI
= nC + wCE + wEI
= nB + wBC + wCE + wEI
= nA + wAB + wBC + wCE + wEI
= wAB + wBC + wCE + wEI
= lABCEI.
Vậy ABCEI là đường đi ngắn nhất từ A đến I, với độ dài bằng 12.