Tập hợp các giá trị thực của tham số m để đồ thị hàm số y=2x-1/ (mx^2-2x+1)(4x^2+4mx+1) có đúng một đường tiệm cận là

Tập hợp các giá trị thực của tham số m để đồ thị hàm số y=2x1mx22x+14x2+4mx+1  có đúng một đường tiệm cận là

A. 1;0

B. 0

C. ;10

D. ;11;+

Trả lời

Hướng dẫn giải

Điều kiện mx22x+104x2+4mx+10 .

- Với m=0 , hàm số có dạng y=14x2+1 .

Đồ thị hàm số có đúng một tiệm cận ngang y=0 .

Do đó m=0  là một giá trị cần tìm.

- Với m0 .

Ta có limx±y=0  nên đồ thị hàm số có một tiệm cận ngang y=0 .

Để đồ thị hàm số có đúng một tiệm cận thì

+ Trường hợp 1. Hai phương trình fx=mx22x+1=0  gx=4x2+4mx+1=0  cùng vô nghiệm

1m<04m24<0m>11<m<1vô nghiệm

+ Trường hợp 2. Phương trình mx22x+14x2+4mx+1=0  có nghiệm duy nhất là x=12 . Khi đó x=12  là nghiệm của một trong hai phương trình fx=0  hoặc gx=0

m4=01+2m+1=0m=0m=1.

Do m0  nên m=1 .

Thử lại, với m=1  thì hàm số là y=2x1x22x+14x24x+1=1x22x+12x1

Khi đó, đồ thị hàm số đã cho có các tiệm cận đứng là  x=1±2,x=12m=1  không thỏa mãn.

Vậy tập hợp tham số m cần tìm là m0 .

Chọn B.

Câu hỏi cùng chủ đề

Xem tất cả