Rút gọn các biểu thức sau (9 /(x^3 - 9x) + 1 / (x + 3)) : ((x - 3) / (x^2 + 3x) - x / (3x + 9)

Rút gọn các biểu thức sau:

\(\left( {\frac{9}{{{x^3} - 9x}} + \frac{1}{{x + 3}}} \right):\left( {\frac{{x - 3}}{{{x^2} + 3x}} - \frac{x}{{3x + 9}}} \right)\);

Trả lời

\(\left( {\frac{9}{{{x^3} - 9x}} + \frac{1}{{x + 3}}} \right):\left( {\frac{{x - 3}}{{{x^2} + 3x}} - \frac{x}{{3x + 9}}} \right)\)

\( = \left[ {\frac{9}{{x\left( {{x^2} - 9} \right)}} + \frac{1}{{x + 3}}} \right]:\left[ {\frac{{x - 3}}{{x\left( {x + 3} \right)}} - \frac{x}{{3\left( {x + 3} \right)}}} \right]\)

\( = \left[ {\frac{9}{{x\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{1}{{x + 3}}} \right]:\left[ {\frac{{x - 3}}{{x\left( {x + 3} \right)}} - \frac{x}{{3\left( {x + 3} \right)}}} \right]\)

\( = \left[ {\frac{9}{{x\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{{x\left( {x - 3} \right)}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}}} \right]:\left[ {\frac{{3\left( {x - 3} \right)}}{{3x\left( {x + 3} \right)}} - \frac{{{x^2}}}{{3x\left( {x + 3} \right)}}} \right]\)

\( = \left[ {\frac{{9 + x\left( {x - 3} \right)}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}}} \right]:\left[ {\frac{{3\left( {x - 3} \right) - {x^2}}}{{3x\left( {x + 3} \right)}}} \right]\)

\( = \frac{{9 + {x^2} - 3x}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}}:\frac{{3x - 9 - {x^2}}}{{3x\left( {x + 3} \right)}}\)

\( = \frac{{{x^2} - 3x + 9}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}}:\frac{{ - \left( {{x^2} - 3x + 9} \right)}}{{3x\left( {x + 3} \right)}}\)

\( = \frac{{{x^2} - 3x + 9}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}}.\frac{{3x\left( {x + 3} \right)}}{{ - \left( {{x^2} - 3x + 9} \right)}}\)

\( = \frac{{ - 3}}{{x - 3}}\).

Câu hỏi cùng chủ đề

Xem tất cả