Một cấp số cộng có số hạng thứ 5 bằng 18 và số hạng thứ 12 bằng 32. Tìm số hạng thứ 50 của cấp số cộng này.
Một cấp số cộng có số hạng thứ 5 bằng 18 và số hạng thứ 12 bằng 32. Tìm số hạng thứ 50 của cấp số cộng này.
Lời giải:
Ta biểu diễn số hạng thứ 5 và số hạng thứ 12 theo số hạng thứ nhất u1 và công sai d.
Ta có: u5 = u1 + (5 – 1)d hay 18 = u1 + 4d.
u12 = u1 + (12 – 1)d hay 32 = u1 + 11d.
Khi đó ta có hệ phương trình \(\left\{ \begin{array}{l}{u_1} + 4d = 18\\{u_1} + 11d = 32\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 10\\d = 2\end{array} \right.\).
Số hạng thứ 50 của cấp số cộng là u50 = u1 + (50 – 1)d = 10 + 49 . 2 = 108.