Gọi A là điểm thuộc đồ thị (C) của hàm số y= x^4-3x^2+2 và có hoành độ a . Có bao nhiêu số nguyên a sao cho tiếp tuyến của (C) tại A cắt

Gọi A là điểm thuộc đồ thị (C) của hàm số y=x43x2+2  và có hoành độ a . Có bao nhiêu số nguyên a sao cho tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt B, C khác A và diện tích tam giác OBC bằng 23 ?

A. 1

B. 3

C. 2

D. 5

Trả lời

Hướng dẫn giải

Ta có y'=4x36x;y'=0x=0x=±62 .

y''=12x26;y''=0x=±22.

Tọa độ các điểm có hoành độ a nguyên để tiếp tuyến tại điểm đó cắt trục hoành tại hai điểm nữa thì 62<a<62a±22a1;0;1

+ Với a=1A1;0 . Khi đó phương trình tiếp tuyến là y=2x+1 .

Xét phương trình x43x2+2=2x+1x=0x=1x=2  nên B0;2,C2;6SΔOBC=2  (loại).

+ Với a=0A0;2 . Khi đó phương trình tiếp tuyến là y=2  nên B3;2,C3;2SΔOBC=23  (thỏa mãn).

+ Với a=1A1;0 . Khi đó phương trình tiếp tuyến là y=2x1  nên B0;2,C2;6SΔOBC=2(loại).

Vậy a=0 .

Chọn A.

Câu hỏi cùng chủ đề

Xem tất cả