Đặt điện áp u = 180 căn bậc hai 2 cos (2 pi t + phi) (với U; không đổi, còn tần số

Đặt điện áp u = 180\(\sqrt 2 {\rm{cos}}\left( {2{\rm{\pi f}}.{\rm{t}} + {\rm{\varphi }}} \right)\) (với U; không đổi, còn tần số \({\rm{f}}\) thay đổi được) vào hai đầu đoạn mạch như hình bên (với \({{\rm{R}}^2} < \frac{{2{\rm{\;L}}}}{{\rm{C}}}\)). Khi \({\rm{f}} = {{\rm{f}}_1} = 36{\rm{\;Hz}}\) hoặc \({\rm{f}} = {{\rm{f}}_2} = 64{\rm{\;Hz}}\) thì điện áp hiệu dụng hai đầu cuộn cảm có cùng giá trị \({{\rm{U}}_{\rm{L}}}\). Khi tần số \({\rm{f}} = {{\rm{f}}_0} = 24\sqrt 2 {\rm{\;Hz}}\) thì công suất tiêu thụ của đoạn mạch đạt cực đại. Điện áp \({{\rm{U}}_{\rm{L}}}\) có giá trị bằng

A. \(90\sqrt 2 {\rm{\;V}}\).
B. \(135{\rm{\;V}}\).
C. \(120\sqrt 3 {\rm{\;V}}\).
D. \(90\sqrt 3 {\rm{\;V}}\).

Trả lời

\(f\)

\({Z_L} \sim f\)

\({Z_C} \sim \frac{1}{f}\)

\(24\sqrt 2 \) (\({P_{\max }} \to \)cộng hưởng)

1

1

36

\(\frac{{36}}{{24\sqrt 2 }}\)

\(\frac{{24\sqrt 2 }}{{36}}\)

64

\(\frac{{64}}{{24\sqrt 2 }}\)

\(\frac{{24\sqrt 2 }}{{64}}\)

\(U_L^2 = \frac{{{U^2}Z_{L1}^2}}{{{R^2} + {{\left( {{Z_{L1}} - {Z_{C1}}} \right)}^2}}} = \frac{{{U^2}Z_{L2}^2}}{{{R^2} + {{\left( {{Z_{L2}} - {Z_{C2}}} \right)}^2}}} = \frac{{{U^2}\left( {Z_{L1}^2 - Z_{L2}^2} \right)}}{{{{\left( {{Z_{L1}} - {Z_{C1}}} \right)}^2} - {{\left( {{Z_{L2}} - {Z_{C2}}} \right)}^2}}}\) (t/c dãy tỉ số = nhau)

\( \Rightarrow {U_L} = 180\sqrt {\frac{{{{\left( {\frac{{36}}{{24\sqrt 2 }}} \right)}^2} - {{\left( {\frac{{64}}{{24\sqrt 2 }}} \right)}^2}}}{{{{\left( {\frac{{36}}{{24\sqrt 2 }} - \frac{{24\sqrt 2 }}{{36}}} \right)}^2} - {{\left( {\frac{{64}}{{24\sqrt 2 }} - \frac{{24\sqrt 2 }}{{64}}} \right)}^2}}}} = 120\sqrt 3 V\). Chọn C

Câu hỏi cùng chủ đề

Xem tất cả