Có hai túi mỗi túi đựng 10 quả cầu có cùng kích thước và khối lượng được đánh số từ 1 đến 10.

Có hai túi mỗi túi đựng 10 quả cầu có cùng kích thước và khối lượng được đánh số từ 1 đến 10. Từ mỗi túi, lấy ngẫu nhiên ra một quả cầu. Tính xác suất để trong hai quả cầu được lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5.

Trả lời

Gọi A là biến cố: “Hai quả cầu lấy ra không có quả cầu nào ghi số 1”,

A1 là biến cố: “Quả cầu lấy ra từ túi I không ghi số 1”,

A2 là biến cố: “Quả cầu lấy ra từ túi II không ghi số 1”.

Ta có A = A1A2. Hai biến cố A1 và A2 độc lập nên P(A) = P(A1) . P(A2).

Lại có P(A1) = P(A2) = 910 = 0,9. Do đó P(A) = (0,9)2.

Gọi B là biến cố: “Hai quả cầu lấy ra không có quả cầu nào ghi số 5”,

B1 là biến cố: “Quả cầu lấy ra từ túi I không ghi số 5”,

B2 là biến cố: “Quả cầu lấy ra từ túi II không ghi số 5”.

Ta có B = B1B2. Hai biến cố B1 và B2 độc lập nên P(B) = P(B1) . P(B2).

Lại có P(B1) = P(B2) = 910 = 0,9. Do đó P(B) = (0,9)2.

Gọi E là biến cố: “Trong hai quả cầu lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5”.

Ta có E = A B.

Theo công thức cộng xác suất ta có P(E) = P(A) + P(B) – P(AB).

Ta có AB là biến cố: “Hai quả cầu lấy ra không có quả nào ghi số 1 và ghi số 5”.

Gọi H1 là biến cố: “Quả cầu lấy ra từ túi I không ghi số 1 và số 5”,

H2 là biến cố: “Quả cầu lấy ra từ túi II không ghi số 1 và số 5”.

Ta có AB = H1H2. Hai biến cố H1 và H2 độc lập nên P(AB) = P(H1) . P(H2).

Lại có P(H1) = P(H2) = 810=0,8. Từ đó P(AB) = (0,8)2.

Do đó, P(E) = P(A) + P(B) – P(AB) = (0,9)2 + (0,9)2 – (0,8)2 = 0,98.

Vậy xác suất để trong hai quả cầu được lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5 là 0,98.

Câu hỏi cùng chủ đề

Xem tất cả