Chứng minh rằng các đa giác đều có cùng số cạnh thì đồng dạng với nhau.

Chứng minh rằng các đa giác đều có cùng số cạnh thì đồng dạng với nhau.

Trả lời

Giả sử cho hai n-giác đều A1A2...An và B1B2…Bn có tâm lần lượt là O và O'. Đặt k=B1B2A1A2=O'B1OA1. Gọi V là phép vị tự tâm O, tỉ số k và C1C2…Cn là ảnh của đa giác A1A2…An qua phép vị tự V. Hiển nhiên C1C2…Cn cũng là đa giác đều và vì C1C2A1A2=k nên C1C2 = B1B2. Vậy hai n-giác đều C1C2….Cn và B1B1…Bn có cạnh bằng nhau, tức là có phép dời hình D biến C1C2…Cn thành B1B2…Bn. Nếu gọi F là phép hợp thành của V và D thì F là phép đồng đạng biến A1A2…An thành B1B2…Bn.Vậy hai đa giác đều đó đồng dạng với nhau.

Câu hỏi cùng chủ đề

Xem tất cả