Cho hình vuông ABCD có hai đường chéo cắt nhau tại O. Gọi M, N, E lần lượt là trung điểm của AB, BC, BO (Hình 58). Chứng minh rằng hai hình AMOD và OENC đồng dạng với nhau.
24
10/08/2024
Cho hình vuông ABCD có hai đường chéo cắt nhau tại O. Gọi M, N, E lần lượt là trung điểm của AB, BC, BO (Hình 58). Chứng minh rằng hai hình AMOD và OENC đồng dạng với nhau.
Trả lời
Gọi G là trung điểm của BM.
Khi đó, ta thấy Hình 58 và Hình 56 là hai hình giống nhau.
+) Theo kết quả Ví dụ 8 trang 32 thì hai hình BGEN và AMOD đồng dạng với nhau (1).
+) Theo kết quả Luyện tập 4 trang 32 thì hai hình OMGE và COEN đồng dạng với nhau hay hai hình MGEO và OENC đồng dạng với nhau (2).
+) Thực hiện phép đối xứng trục GE thì hình BGEN biến thành hình MGEO (3).
Do đó, hai hình BGEN và MGEO đồng dạng với nhau.
Từ (1), (2) và (3) suy ra hai hình AMOD và OENC đồng dạng với nhau.