Câu hỏi:
12/03/2024 49Chọn câu đúng
A. \[{\left( {\frac{{ - 7}}{6}} \right)^2} = \frac{{ - 49}}{{36}}\]
B. \[{\left( {\frac{2}{3}} \right)^3} = \frac{8}{9}\]
C. \[{\left( {\frac{2}{{ - 3}}} \right)^3} = \frac{8}{{ - 27}}\]
D. \[{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{ - 16}}{{81}}\]
Trả lời:
Đáp án A: \[{\left( {\frac{{ - 7}}{6}} \right)^2} = \frac{{{{\left( { - 7} \right)}^2}}}{{{6^2}}} = \frac{{49}}{{36}} \ne \frac{{ - 49}}{{36}}\] nên A sai.
Đáp án B: \[{\left( {\frac{2}{3}} \right)^3} = \frac{{{2^3}}}{{{3^3}}} = \frac{8}{{27}} \ne \frac{8}{9}\] nên B sai.
Đáp án C: \[{\left( {\frac{2}{{ - 3}}} \right)^3} = \frac{{{2^3}}}{{{{\left( { - 3} \right)}^3}}} = \frac{8}{{ - 27}}\] nên C đúng.
Đáp án D: \[{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}} \ne \frac{{ - 16}}{{81}}\] nên D sai.
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một người đi xe máy, đi đoạn đường AB với vận tốc 40km/h hết \(\frac{5}{4}\) giờ. Lúc về, người đó đi với vận tốc 45km/h. Tính thời gian người đó đi từ B về A?
Câu 2:
Tính \[\frac{{28}}{{15}}.\frac{1}{{{4^2}}}.3 + \left( {\frac{8}{{15}} - \frac{{69}}{{60}}.\frac{5}{{23}}} \right):\frac{{51}}{{54}}\]
Câu 3:
Tính diện tích một hình tam giác biết hai cạnh góc vuông của tam giác đó lần lượt là \(\frac{5}{3}\) cm và \(\frac{7}{4}\) cm?
Câu 4:
Có bao nhiêu giá trị nguyên dương của x thỏa mãn \[{\left( {\frac{{ - 5}}{3}} \right)^3} < x < \frac{{ - 24}}{{35}}.\frac{{ - 5}}{6}\] ?
Câu 5:
Phân số \(\frac{a}{b}\) là phân số lớn nhất mà khi chia mỗi phân số \(\frac{{12}}{{35}};\frac{{18}}{{49}}\) cho \(\frac{a}{b}\) ta được kết quả là một số nguyên. Tính a + b.
Câu 7:
Cho \[M = \frac{{17}}{5}.\frac{{ - 31}}{{125}}.\frac{1}{2}.\frac{{10}}{{17}}.{\left( {\frac{{ - 1}}{2}} \right)^3}\] và \[N = \left( {\frac{{17}}{{28}} + \frac{{28}}{{29}} - \frac{{19}}{{30}} - \frac{{20}}{{31}}} \right).\left( {\frac{{ - 5}}{{12}} + \frac{1}{4} + \frac{1}{6}} \right)\] . Khi đó tổng M + N bằng
Câu 8:
Tìm số tự nhiên x biết \[\frac{1}{3} + \frac{1}{6} + \frac{1}{{10}} + ... + \frac{1}{{x\left( {x + 1} \right):2}} = \frac{{2019}}{{2021}}\]
Câu 9:
Tìm \[M = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{99}}}} + \frac{1}{{{2^{100}}}}\]
Câu 11:
Giá trị của x thỏa mãn \[\frac{{13}}{{15}} - \left( {\frac{{13}}{{21}} + x} \right).\frac{7}{{12}} = \frac{7}{{10}}\] ?
Câu 12:
Tìm số nguyên x biết \[\frac{{ - 5}}{6}.\frac{{120}}{{25}} < x < \frac{{ - 7}}{{15}}.\frac{9}{{14}}\]
Câu 13:
Số các số nguyên x để \[\frac{{5x}}{3}:\frac{{10{x^2} + 5x}}{{21}}\] có giá trị là số nguyên là
Câu 14:
Có bao nhiêu giá trị của x thỏa mãn \[\left( {\frac{7}{6} + x} \right):\frac{{16}}{{25}} = \frac{{ - 5}}{4}\] ?
Câu 15:
Giá trị biểu thức \[M = \frac{5}{6}:{\left( {\frac{5}{2}} \right)^2} + \frac{7}{{15}}\] là phân số tối giản có dạng \(\frac{a}{b}\) với a >0. Tính b + a.