Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD. Gọi M là trung điểm của DE. Chứng minh rằng: a) Tia CA là tia phân giá

Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD. Gọi M là trung điểm của DE. Chứng minh rằng:

a) Tia CA là tia phân giác của góc BCF

Trả lời
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD. Gọi M là trung điểm của DE. Chứng minh rằng:  a) Tia CA là tia phân giác của góc BCF (ảnh 1)

a) Ta chứng minh tứ giác ECDF nội tiếp được

(Vì ECD^=EFD^=900)

Suy ra C2^=D1^ (góc nội tiếp cùng chắn cung EF)  (1)

Suy ra C1^=D1^ (góc nội tiếp cùng chắn cung AB)  (2)

Từ (1) và (2) suy ra C1^=C2^

Do đó CA là tia phân giác của góc BCF

Câu hỏi cùng chủ đề

Xem tất cả