Cho tứ diện ABCD, M là điểm thuộc BC sao cho MC = 2MB. N, P lần lượt là trung điểm của BD và AD

Cho tứ diện ABCD, M là điểm thuộc BC sao cho MC = 2MB. N, P lần lượt là trung điểm của BD và AD. Điểm Q là giao điểm của AC với (MNP). Tính QAQC.

Trả lời

NP là đường trung bình của ∆ACD NP // AB, mà AB (ABC) NP // (ABC)

P (MNP) ∩ (ACD) (1)

Trong mặt phẳng (BCD) gọi J = MN ∩ CD, có

JMNMNPJCDACD

J (MNP) ∩ (ACD) (2)

Từ (1) và (2): (MNP) ∩ (ACD) = JP

Trong mặt phẳng (ACD) gọi Q = JP ∩ AC. Có:

QACQJPMNP

Q = AC ∩ (MNP). Có:

MQ=MNPABCNPAB;NPMNP;ABABC

MQ // NP // AB

Theo định lý Ta-lét ta có: CQCA=CMCB=23QAQC=12.

Câu hỏi cùng chủ đề

Xem tất cả