Cho tam giác ABC vuông tại A, có đường phân giác AD. Vẽ hình vuông MNPQ ở đó M thuộc cạnh AB, N thuộc cạnh AC, P và Q thuộc cạnh BC. Gọi E và F lần lượt là giao điểm của BN và MQ, CM và NP (H

Cho tam giác ABC vuông tại A, có đường phân giác AD. Vẽ hình vuông MNPQ ở đó M thuộc cạnh AB, N thuộc cạnh AC, PQ thuộc cạnh BC. Gọi EF lần lượt là giao điểm của BNMQ, CMNP (Hình 60). Chứng minh:

a) DE song song với AC;

b) DE = DF.

Cho tam giác ABC vuông tại A, có đường phân giác AD. Vẽ hình vuông MNPQ ở đó M thuộc cạnh AB, N thuộc cạnh AC, P và Q thuộc cạnh BC. Gọi E và F lần lượt là giao điểm của BN và MQ, CM và NP (Hình 60). Chứng minh: a) DE song song với AC; b) DE = DF. (ảnh 1)

Trả lời

Cho tam giác ABC vuông tại A, có đường phân giác AD. Vẽ hình vuông MNPQ ở đó M thuộc cạnh AB, N thuộc cạnh AC, P và Q thuộc cạnh BC. Gọi E và F lần lượt là giao điểm của BN và MQ, CM và NP (Hình 60). Chứng minh: a) DE song song với AC; b) DE = DF. (ảnh 2)

Cho tam giác ABC vuông tại A, có đường phân giác AD. Vẽ hình vuông MNPQ ở đó M thuộc cạnh AB, N thuộc cạnh AC, P và Q thuộc cạnh BC. Gọi E và F lần lượt là giao điểm của BN và MQ, CM và NP (Hình 60). Chứng minh: a) DE song song với AC; b) DE = DF. (ảnh 3)
 
Media VietJack

Câu hỏi cùng chủ đề

Xem tất cả