Cho tam giác ABC nội tiếp đường tròn tâm O. Các đỉnh B, C cố định còn đỉnh A thay đổi trên đường tròn đó

Bài 1.32 trang 33 Chuyên đề Toán 11: Cho tam giác ABC nội tiếp đường tròn tâm O. Các đỉnh B, C cố định còn đỉnh A thay đổi trên đường tròn đó. Vẽ hình bình hành ABCD. Chứng minh rằng điểm D luôn thuộc một đường tròn cố định.

Trả lời

Bài 1.32 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức

Vì ABCD là hình bình hành nên AD=BC.

Do B, C cố định nên vectơ BC cố định.

Khi đó ta có phép tịnh tiến theo vectơ BC biến điểm A thành điểm D. Mặt khác, A thuộc đường tròn tâm O ngoại tiếp tam giác ABC nên D thuộc đường tròn tâm O' cố định là ảnh của đường tròn tâm O qua phép tịnh tiến theo vectơ BC. Ở đó, bán kính hai đường tròn bằng nhau và O' là ảnh của O qua phép tịnh tiến theo vectơ BC được xác định bởi OO'=BC.

Xem thêm các bài giải Chuyên đề Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả