Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau tại H (). a. Chứng minh tứ giác AEHD nội tiếp được đường tròn. Từ đó suy ra 

Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau tại H (DAC,EAB).

a. Chứng minh tứ giác AEHD nội tiếp được đường tròn. Từ đó suy ra BCD=AED

Trả lời
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau tại H ().  a. Chứng minh tứ giác AEHD nội tiếp được đường tròn. Từ đó suy ra  (ảnh 1)
a. Vì BDAC,  CEAB nên H là trực tâm ΔABC

Ta có: AEH^+ADH^=900+900=1800 nên AEHD là tứ giác nội tiếp

AED^=AHD^AHD^=ACB^ (cùng phụ HAD^) nên AED^=BCD^

Câu hỏi cùng chủ đề

Xem tất cả