Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A và AB = AC = AA' = a. Tính theo a khoảng cách:

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A và AB = AC = AA' = a. Tính theo a khoảng cách:

a) Từ điểm A đến đường thẳng B'C'.

Trả lời

a) Hạ AH ^ B'C' tại H. Khi đó d(A, B'C') = AH.

Vì ABC.A'B'C' là lăng trụ đứng nên các mặt bên là hình chữ nhật, do đó AA' = BB' = CC' = a, AB = A'B' = a; AC = A'C' = a, BC = B'C'.

Xét tam giác ABB' vuông tại B, có AB'=AB2+BB'2=a2+a2=a2.

Xét tam giác ACA' vuông tại A, có A'C=AA'2+AC2=a2+a2=a2.

Suy ra AC' = a2.

Xét tam giác ABC vuông tại A, có BC=AB2+AC2=a2+a2=a2.

Suy ra B'C' = a2.

Do đó AB' = AC' = B'C' = a2. Suy ra tam giác AB'C' đều.

Xét tam giác AB'C' đều có AH là đường cao nên AH=AB'32=a232=a62.

Vậy d(A, B'C') = a62.