Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của

Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của góc B cắt CD tại F (H.3.32).

Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của  (ảnh 1)

a) Chứng minh hai tam giác ADE và CBF là những tam giác cân, bằng nhau.

Trả lời

Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của  (ảnh 2)

a) Vì ABCD là hình bình hành nên AB // CD hay BE // DF.

Vì DE là tia phân giác của ADC^ nên D^1=D^2.

D^1=E^1 (BE // DF, hai góc so le trong) nên D^2=E^1.

Suy ra tam giác ADE cân tại A.

Tương tự ta cũng chứng minh được: tam giác BCF cân tại C.

Vì ABCD là hình bình hành nên AD = BC; A^=C^;  ADC^=ABC^.

Vì AE là tia phân giác ADC^; BF là tia phân giác ABC^ nên

B^1=B^2;  D^1=D^2 ADC^=ABC^.

Do đó B^1=B^2=D^1=D^2.

Xét ∆ADE và ∆CBF có:

A^=C^ (chứng minh trên);

AD = BC (chứng minh trên);

B^2=D^2 (chứng minh trên).

Do đó ∆ADE = ∆CBF (g.c.g).

Câu hỏi cùng chủ đề

Xem tất cả