Cho hệ phương trình: (m-1)x -my = 3m-1 ; 2x -y = m +5

Cho hệ phương trình m1xmy=3m12xy=m+5.

Tìm m để có nghiệm duy nhất (x; y) sao cho biểu thức S = x2 + y2 đạt giá trị nhỏ nhất.

Trả lời

m1xmy=3m12xy=m+5

 m1xm2xm5=3m1y=2xm5

m1x2mx+m2+5m=3m1y=2xm5

 m+1x=m+121y=2xm52

Để hệ phương trình có nghiệm duy nhất thì phương trình (2) có nghiệm duy nhất hay m ≠ −1

Khi đó từ phương trình (2) ta suy ra x=m+12m+1=m+1 thay x = m + 1 vào phương trình (1) ta được y = 2(m + 1) – m – 5 = m – 3

Vậy với m ≠ −1 thì hệ đã cho có nghiệm duy nhất (x; y) = (m + 1; m – 3)

Ta xét

S = x2 + y2

= (m + 1)2 + (m – 3)

= m2 + 2m + 1 + m2 − 6m + 9

= 2m2 – 4m + 10

= 2(m2 – 2m + 1) + 8

= 2(m – 1)2 + 8

Vì (m – 1)2 ≥0; m 2(m – 1)2 + 8 ≥ 8

Hay S ≥ 8; m.

Dấu “=” xảy ra khi m – 1 = 0  m = 1 (TM)

Vậy m = 1 là giá trị cần tìm.

Câu hỏi cùng chủ đề

Xem tất cả