Cho hàm số y= ã^2+x-1/ 4x^2+bx+9  có đồ thị  (a, b là các số thực dương và ab=4 ). Biết rằng (C) có tiệm cận ngang y=c 

Cho hàm số y=ax2+x14x2+bx+9  có đồ thị  (a, b là các số thực dương và ab=4 ). Biết rằng (C) có tiệm cận ngang y=c  và có đúng một tiệm cận đứng.

Giá trị của tổng T=3a+b24c  bằng

A. 8

B. 9

C. 6

D. 11

Trả lời

Hướng dẫn giải

Điều kiện 4x2+bx+90

Phương trình tiệm cận ngang của đồ thị hàm số là y=a4a4=c

Đồ thị (C) có một tiệm cận đứng nên ta có các trường hợp sau:

Trường hợp 1: Phương trình 4x2+bx+9=0  có nghiệm kép x=x0  và không là nghiệm của ax2+bx+1=0

b2144=0b=±12. Vì b>0b>0  nên b=12a=13c=112

Thử lại ta có hàm số y=13x2+x14x2+12x9  (thỏa mãn)

Vậy T=3.13+1224.112=11

Trường hợp 2: 4x2+bx+9=0  có hai nghiệm phân biệt và một trong hai nghiệm thỏa mãn ax2+x1=0 . Điều này không xảy ra vì ab=4  .

Chọn D

Câu hỏi cùng chủ đề

Xem tất cả