Cho hàm số y= 2x+2/ x-1 có đồ thị là (C). Phương trình tiếp tuyến của (C) tạo với hai tiệm cận một tam giác có chu vi nhỏ nhất là

Cho hàm số y=2x+2x1 có đồ thị là (C). Phương trình tiếp tuyến của (C) tạo với hai tiệm cận một tam giác có chu vi nhỏ nhất là

A. Δ:y=x1      Δ:y=x+17
B. Δ:y=x1       Δ:y=x+7 
C. Δ:y=x21      Δ:y=x+7      
D. Δ:y=x3     Δ:y=x+2

Trả lời

Hướng dẫn giải

Gọi A, B là giao điểm của tiếp tuyến tại điểm Mx0;y0C  với hai tiệm cận và I là giao điểm của hai đường tiệm cận. Khi đó ΔIAB  vuông tại I.

Theo lý thuyết, chu vi ΔIAB  IA+IB+AB2IA.IB+2IA.IB=8+42  vì IA.IB=4adbcc2=16

Do đó chu vi nhỏ nhất bằng 8+42  khi IA=IBk=±1 .

Mặt khác k=y'x0=4x012<0k=1 .

Vậy ta có 4x012=1x0=3x0=1

Với x0=3  thì y0=4 . Do đó phương trình tiếp tuyến là y=x3+4=x+7

Với  x0=1 thì y0=0 . Do đó phương trình tiếp tuyến là y=x+1=x1

Chọn B.

Câu hỏi cùng chủ đề

Xem tất cả