Cho hàm số u = sinx và hàm số y = u2. a) Tính y theo x. b) Tính y'x (đạo hàm của y theo biến x), y'u (đạo hàm của y theo biến u) và u'x (đạo hàm của u theo biến x) rồi so sánh y'x với y'uu'x

Cho hàm số u = sinx và hàm số y = u2.

a) Tính y theo x.

b) Tính y'x (đạo hàm của y theo biến x), y'u (đạo hàm của y theo biến u) và u'x (đạo hàm của u theo biến x) rồi so sánh y'x với y'u×u'x.

Trả lời

a) Ta có y = u2 = (sinx)2 = sin2x.

b) Ta có y'x = (sin2x)' = (sinx×sinx)' = (sinx)'×sinx + sinx×(sinx)'

= cosx×sinx + sinx×cosx = 2sinxcosx = sin2x. (1)

y'u = (u2)' = 2u = 2sinx.

u'x = (sinx)' = cosx.

Có y'u×u'x = 2sinxcosx = sin2x. (2)

Từ (1) và (2), ta có: y'x = y'u×u'x.

Câu hỏi cùng chủ đề

Xem tất cả